D-A240 249 2
R0

w1 0748

Fast Algorithms for Linear Least-Squares

stimation of Multi-Dimensional Random Fields

Andrew E. Yagle
FINAL TECHNICAL REPORT
Grant # AFOSR 89-0017

DTIC

ELECTE
SEP091331)

distritut fon Y rhatted

N -

MC\ - >
Bor '
Ve YN g’]" * t
} 20 % Y, / .‘Dm\‘—‘ C. o « ‘;
) UTION STATEMENT A v L2
Approved ior public release; Sl L,
Distribution Unlimited ! e'.; 2: - : :’; X
-~ . \"m
THE UNIVERSITY OF MICHIGAX% o R
B
Department of Electrical Engineering » 28 ';jg
and Computer Science ® 23T
.y " - »-»5’80
Ann Arbor, Michigan 48109-2122 b
Usa ., ‘oo

91-09736
T

V'ﬁmx g




Air Force Office of Scientific Research

Fast Algorithms for Linear Least-Squares

Estimation of Multi-Dimensional Random Fields

Andrew E. Yagle
FINAL TECHNICAL REPORT
Grant # AFOSR 89-0017

Principal Investigator:

Andrew E. Yagle, Assistant Professor

Dept. of Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor, MI 48109-2122

Phone: (313) 763-9810. Fax: (313) 763-1503. E-mail: aey@dip.eecs.umich.edu

Date of This Report: July 1991.

Directorate of Mathematical Sciences

<
)




Lev c_338.8:Ca” IN CF T=5225¢k

REPORT DOCUMENTATION PAGE

AEPORT SECLAITY CLASSIF . CATION 19. AESTAMICTIVE MARKINGS
(1}
UNCLASSIFIED
ﬁ!Cb"" CLASSIFICATION auTHQAITY J. OISTRIGUTION/AVAILABILITY OF AEPOAT
1 OECLASSIFICAT ON/OOWNGAADING SCHEDULE Unlimited
SERECAMING ORGANIZATION AEPORT NUMBERIS) S. MONITORING OAGANIZATION REPOAT NUMBERIS)
AFOR -39 -60177
e YAME OF PERSQAMING ORGANIZATION B. OFFICE SYMBO!L 7e. NAME OF MONITORING ORGANIZATION
. . 11/ applcedie: . . e N
DAtvees T OF HithiGon Air Force Office of Scientific Research
;. ADOARESS /City Stece ana ZIP Code) To. ADORESS (City. Siam ene ZIP Cose:
1301 Beal St. Bolling Air Force Base
Ann Arbor, MI 48108-2122 Washington, DC 20332-6448
LNAME OF EUNDING/SPONSQORING . OFPICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTISICATION NUMBER
ORGANIZATION (11 applicebie)
AFOSR-89-0017
1
. AQDDRESS City. State ena Z!P Cods) 10. SOURCE OF BUNDING NOS.
FPROGRAM PROJECT TASK WORAK N T
SLEMENT NO. NO. NO NO
+ (p |
,v?fl Hinciude Secunty Classficstion) LD l l® az)o(?/ /4 '

ast Algorithms for Linear Least-Squares Estimation of Multi-Dimensional Random Fields

P PERSONAL AUTHOR®) Dr. Andrew E. Yagle

& TYPE OF ARPORT 130 TIME COVERRD > 14. OATE OF AEPOAT (Y, Mo.. Dey/ 15 PAGE CCUNT
Final Technical emom 11/1/88-5/31/91 July 31, 1991
SUPPLEMENTARY NOTATION
COSATI CODES 18 SUBJECT TERMS (Connnaue on reveres ;! Neceansry ond 16entify by elocR numoer:
evo | cmoue | Sus of Random fields, fast algorithms, linear least-squares estimation,

Levinson algorithm, linear prediction, spectral estimation.

ABBTAACT (Continue on mverse I necesary end idenilly ¥y block Anumbder)

This report develops fast algorithms for computing filters for linear least-squares estimation of
one, two, and three-dimensional random fields. The algorithms generalize the split Levinson and
Schur algorithms to two and three dimensions; however, they are applicable to a more general
Toeplitz-plus-Hankel structure in the covariance function. A discrete version of the Bellman-
Siegert-Krein resolvent identity is developed for smoothing problems in one and two dimensions.
Applications to linear predictive coding, and restoration and smoothing, of isotropic randcm felds
on a polar raster are demonstrated. In addition, two new algorithms are developed for spectral
estimation on a two-dimensional polar raster. Both use the Radon transform to map the 2-D
problem into 1-D problems. Interpolating functions for computing the Radon transform, positive
definite covariance extensions, and correlation matching are all considered.

CISTRIGUTION/AVAILABILITY OF ASSTRACT 2. ABSTRACT SECURITY CLASBIFICATION
- 'S Q
CLASSIFIEO/UNLIMITED ! SAME AL RPT. __, OTIC USENS Q UN"I"AS"‘IFIED
N eME OF RE5PUNS Bus 1nCrvIDUAL 270 TELEPHONE NUMBER 22¢ OFSICE SYMEOL

tinclude Aree Code:

FORM 1473, 83 APR €0ITION OF | JAN 7318 OSSOLETE. UNCLASSIFIE

19 SECUMITY CLASSIFICATION CF TS PACE




TABLE OF CONTENTS

. Quick Summary of Research Accomplishments 1
. Quick Review of Linear Prediction Fast Algorithms

2.1 One-Dimensional Levinson, Schur, and Split Algorithms 2

2.2 Two-Dimensional Levinson and Schur Algorithms 3

. Research Objectives 4

. Research Accomplishments

I. Fast Algorithms for Optimal Filters 5

I1. Algorithms for Covariance and Spectral Estimation 10

. References 13

. Publications Supported by This Grant 14

APPENDICES A-J

‘9
]
. Acoession Fc’i_#

NTIS GRA&I W
DTIC TAE O
Unocwrsuneed O
Juo L LTlo o

By ol
Tlovroiatiia/

o

Aveil v iliey Codes

RS

Aensi)l and/or
Spaaniel

Dice

A/‘




1. QUICK SUMMARY OF RESEARCH ACCOMPLISHMENTS

. A new fast algorithm for solving Toeplitz-plus-Hankel systems of equations. The new
algorithm appears to be 33% faster than the previous approach of reformulating the
problem as a block-Toeplitz system of equations.

. A new fast algorithm for solving block-Toeplitz-plus-Hankel systems of equations. This
algorithm is usetul for linear prediction for two-dimensional random fields defined on
a discrete polar raster. The covariance must be a Toeplitz-plus-Hankel function of
both the radial and augular arguments; ar. isotropic random field has this property.

. A fast algorithm for linear prediction for three-dimensional random fields defined on
a spherical raster. The covariance must be a Toeplitz-plus-Hankel function of radius
and of the two angular arguments; a time-varying random field that is wide-sense
stationary in time has this property.

. A discrete form of the Bellman-Siegert-Krein resolvent identity, which can be used to
compute smoothing filters from the prediction filters computed using the algorithms
in #2 and #3 above. This generalizes a one-dimensional (1-D) continuous-parameter
result of Kailath to: (1) the discrete case; and (2) two dimensions (2-D).

. Two new algorithms for estimating a structured Toeplitz-plus-Hankel covariance func-
tion from time series data in 1-D or 2-D. The estimated covariances have the structure
required by the algorithms in #2 and #3 above.

. The two-dimensional linear prediction problem on a 2-D polar raster. Includes: (1)
two new algorithms for spectral estimation, using Radon transforms to map the 2-D
problem into 1-D problems; (2) interpolating functions to compute Radon transforms;
and (3) positive-definite covariance extension and correlation matching.

. Some proposed VLSI implementations of the 1-D and 2-D algorithms described above.
The similarity of these algorithms to finite-difference equations allows VLSI for finite-
difference equations to be adapted to these algorithms, with some changes.

. Demonstrations of the new algorithms applied to the problems of: (1) linear predictive
coding of images defined on a polar raster: and /?) smoothing and .estcratica of these

images. Such images arise in tomography and spotlight synthetic aperture radar.




2. QUICK REVIEW OF LINEAR PREDICTION FAST ALGORITHMS

Linear least-squares estimation has played an important and useful role in modern
signal processing. It has been applied to problems in one-dimensional prediction and
estimation with considerable success. In roughly the last decade, similar success has been

achieved for multidimensional estimation and smoothing problems.

In order to place the results of this report in proper perspective, it is worthwhile to
briefly review some fast algorithms used in linear least squares estimation. More details

on this material are available in Section 2 of Appendix A.
2.1 One-Dimensional Levinson, Schur, and Split Algorithms

In the one-dimensional case, for a wide-sense stationary random process, the linear
prediction problem can be solved efficiently using the celebrated Levinson algorithm {1].
This algorithm utilizes the Toeplitz structure of the covariance matrix to reduce the number
of multiplications required to solve the Nth order prediction problem from the O(N?)
required by Gaussian elimination to O(N?). The Levinson algorithm recursively computes
the prediction filters in increasing order. In the process, it generates a set of reflection

coefficients that constitute an alternative parametrization of the prediction filters.

In the Levinson algorithm, the reflection coefficients must be computed using an “in-
ner product” expression (equation (2-1b) of Appendix A), which accounts for roughly
one-third of the computation in the algorithm. More importantly, this computation is
not parallelizable. The “inner product” computation can be avoided by using the Schur
algorithm [2] to compute the reflection coeffici ‘nts directly from the covariance of the ran-
dom process. Thus a more efficient procedure for computing the linear prediction filters
is to run the Schur algorithm in parallel with the Levinson algorithm, using the reflection
coefficients computed by the Schur algorithm in the Levinson algorithm {3].

Recently Delsarte and Genin [4] noted that a redundancy exists in the lattice com-
putations in the Levinson and Schur algorithms. By replacing the lattice recursions with
a single three-term recurrence, half of the multiplications in the lattice recursions are

avoided. This results in the split Levinson and Schur algorithms, which are obviously more
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efficient implementations of the ciassical Levinson and Schur algorithms.

In the split algorithms, the reflection coefficients parametrizing the prediction filters
are replaced by “potentials” that also parametrize these filters. The split Schur algorithm
can be used to compute these potentials from the covariance function; the potentials are
then inserted into a split Levinson algorithms running in parallel. More importantly, the
split algorithms are the axis along which the one-dimensional Levinson and Schur algo-

rithms can be extended to higher dimensions, and to more general covariance structures.
2.2 Two-Dimensional Levinson and Schur Algorithms

There have been several efforts to generalize the Levinson and Schur algorithms to
two dimensions, in order to simplify the solution of the two dimensional linear prediction
problem. We quickly summarize these here; for more details see Appendices A and C.

The usual approach is to assume that a two-dimensional random field is [5]-[7): (1)
defined on a rectangular array of points; (2) stationary; (3) has quarter-plane or asymmet-
ric half-plane causality, i.e., the linear prediction filter for the random field should have
quarter-plane or asymmetric half-plane support. Then the two-dimensional linear predic-
tion problem can be formulated as a multickannel one-dimensional problem, and solved
using the multichannel Levinson and Schur algorithms [8].

The multichannel Levinson and Schur algorithms are essentially matrix versions of
the one-dimensional algorithms, and they exploit the Toeplitz-block-Toeplitz structure of
the covariance matrix to similarly reduce the number of multiplications needed to solve
the two-dimensional discrete Wiener-Hopf (or Yule-Walker) equations. There are several
variations on this theme, but all essentially reformulate the two-dimensicnal problem on a

rectangular lattice as a multichannel one-dimensional problem of some kind.




3. RESEARCH OBJECTIVES

The goals of this project were as follows:

1. To develop two-dimensional versions of the Levinson and Schur algorithms that relax
the causality requirements of existing two-dimensional algorithms, and replace them
with causality assumptions that are more physically reasonable. These algorithms
should also not require stationarity of the random field, but allow a more general
structure in the covariance function;

2. To develop algorithms for the smoothing problem, as opposed to the prediction prob-
lem, for random fields. Since random fields are in general not causally generated,
the use of the prediction filters computed using the algorithms in #1 is limited to
linear predictive coding of the random field. Linear least squares filters suitable for
reducing noise and restoration should be smoothing filters that use all the noisy data
to estimate the random field at any point;

3. To develop three-dimensional versions of the algorithms in items #1 and #2, suitable
for three-dimensional random fields. Such random fields describe random processes
defined over space, e.g., temperature, images varying in time, etc.;

4. To successfully implement these algorithms, study their numerical behavior, and apply
them to scme problems in image restoration, smoothing, and linear predictive coding.
All four goals have been successfully accomplished, as this report will demonstrate.

In addition, we have accomplished the following additional goals:

5. To develop algorithms for estimating from 1-D and 2-D time series data covariances

with the structure required by the above algorithms;

6. To study the two-dimensional linear prediction problem on a polar raster, and develop °
two-dimensional spectral estimation algorithms that ensure non-negative spectral es-
timates;
7. To develop possible VLSI implementations of the generalized Levinson and Schur g
algorithms.
o




4. RESEARCH ACCOMPLISHMENTS

This section contains a concise summary of our research results. Technical details are
provided in the Appendices, as noted below. Part I includes Sections 4.1-4.5, and covers
development of fast algorithms for determining optimal filters for least-squares estimation
of random fields. Part II includes Sections 4.6-4.9, and covers estimation of structured
covariances from 1-D and 2-D time series data, spectral estimation on a polar raster from
2-D time series data, applications, and VLSI implementations.

All of the results presented below are new contributions to the field of linear prediction.
Part I: Fast Algorithms Jor Optimal Filters
4.1 Continuous-Parameter Results

Our original proposal was formulated in continuous-parameter space, since our pre-
liminary results we.c all continuous-parameter algorithms. Specifically, the goal was to
develop fast algorithms for solving the multi-dimensional Wiener-Hopf integral equation

K(z,y) = h(z,y) + /| | MOk WISl 5y e Rn =123

The solution h(z,y) of this integral equation is the optimal linear least-squares filter for
computing the estimate 3(z) of a zero-mean random field with covariance k(z,y) from
noisy observations {w(z) = s(z) + v(2), |z| < |z|}, where v(z) is zero-mean white noise.

In [9] and [10] we noted for n = 3 that if the covariance function k(z,y) satisfies
(Az — Ay)k(z,y) =0, then the prediction filter h(z,y) satisfies the differential form

(Bz = Ayh(z,y) = /S V(zhllzle,veltde; V(z,e) =~ grlelh(z o)

where S is the unit sphere 2nd e is a unit vector in R3.
The dcrivation of this equation and its implications are discussed extensively in Ap-
pendix A. Here we merely note some significant facts:
1. The differential form can be viewed as some sort of three-dimensional, continuous-
parameter generalization of the split Levirson recurrence. V(z,¢) is a similar gener-

alization of the potential in the split algorithms;
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2. A similar differential form, .initia'ﬁzed using the covariance function k(z,y), can be
used to compute V(z,e) from k(z,y). This can be viewed as a three-dimensional,
continuous-parameter generalization of the split Schur recurrence;

3. The differential forra can be propagated recursively in increasing prediction “order”
|z|, for all |y| < |z|. In this way, it is possible to solve the three-dimensional Wiener-
Hopf equation recursively in increasing |z;

4. The structure (A; — Ay)k(z,y) = 0 required in the covariance function can be
viewed as a generalization of the block-Toeplitz structure required by previous two-
dimensional Levinson algorithms. However, it is much more general: note that
isotropic (k(z,y) = k(| — y|)) and homogeneous (k(z,y) = k(z — y)) random fields
are included as special cases of this structure;

5. The causality assumed in the random field prediction filters h(z,y) is simply that
h(z,y) = 0 for [y| > |z|, i.e., causality is defined simply in terms of radius. This is
more reasonable physically than quarter-plane causality, lexicographic ordering, etc.
The above differential forms generate the prediction filter for the random field. How-

ever, for estimation, noise reduction, and image restoration, the smoothing filter which
uses all noisy observations (including |y| > |z|) is desirable. In the one-dimensional case,
Kailath [10] has shown that the smoothing filter can be easily obtained from the pre-
diction filter using the Bellman-Siegert-Krein resolvent identity. For our purposes, this
is simply a differential equation relating the smoothing and prediction filters. A three-
dimensional generalization of the result of ['], applicable to the smoothing problem for
three-dimensional random fields, is derived in Appendix A, which consists of the follow-
ing paper: A.E. Yagle, “Analogues of Split Levinson, Schur, and Lattice Algorithms for
Three-Dimensional Random Field Estimation Problems,” SIAM J. Appl. Math., vol. 50,
no. 6, pp. 1780-1799, Dec. 1990.

A major part of this project has focused on deriving inherently discrete versions or
counterparts to the above continuous algorithms, and one and two dimensional versions of
the above three-dimensional algorithms. There are several reasons for this:

1. Since the data to be proces-ed is most likely sampled or discrete in nature, the actual

problem of interest is the discrete version;
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2. Any continuous algorithms must ultimately be discretized before they can be imple-
mented on a computer; however, discretization errors will be eliminated if an inher-
ently discrete version of the algorithms, applicable to discrete problems, can be found;

3. The one-dimensional and two-dimensional cases are important in their own right. The
two-dimensional case is particularly important, due to image processing applications;

4. Our initial attempts along these lines quickly met with success (see below).
4.2 One-Dimensional Toeplitz-Plus-Hankel Systems

The one-dimensional discrete version of this algorithm is quite interesting in its own
right. It is a generalization of the split Levinson and Schur algorithms that solves Toeplitz-
plus-Hankel systems of equations (i.e., systems of equations in which the system matrix is
the sum of an arbitrary Toeplitz matrix and an arbitrary Hankel matrix). This algorithm
requires only half as many multiplications as a previous algorithm [11, for such systems of
equations.

Toeplitz-plus-Hankel systems of equations arise in linear-phase prediction filter design,
the Hildebrand-Prony spectral line estimation procedure, PADE approximation, and at-
mospheric scattering, in addition to the nonstationary process linear prediction application
motivating this algorithm here.

The heart of the algorithm is a four-term recurrence that uses two potentials, as
compared to the usual split algorithm recurrence that is a three-term recurrence using a
single potential. Since a Toeplitz-plus-Hankel system has twice as many degrees of freedom
as the purely Toeplitz system solved by the isual split algorithms, this is reasonable, and
it seems to be efficient.

Details are given in Appendix B, which consists of the paper: A.E. Yagle, “New
Analogues of Split Algorithms for Arbitrary Toeplitz-plus-Hankel Matrices,” to appear
in IEEE Trens. Signal Processing, vol. ASSP-39, no. 11, Nov. 1991. These include
application to Toeplitz-plus-Hankel normal and Yule-Walker equations, arbitrary Toeplitz-
plus-Hankel systems of equations, and simplifications to the classical split algorithms [4]
for purely Toeplitz systems.




4.3 Two-Dimensional Block-Toeplitz-Plus-Hankel Systems

The two-dimensional discrete version of this algorithm solves block Toeplitz-plus-
Hankel systems of equations. This algorithm is useful for linear prediction for two-
dimensional random fields defined on a discrete polar raster. The covariance must be
a Toeplitz-plus Hankel function of both the radial and angular arguments; the important
case of an isotropic random field has this property.

Random fields defined on a discrete polar raster arise in tomography and spotlight
synthetic apei‘ure radar. Although such data could be interpolated onto a rectangular
lattice, this is necessarily inexact; it also affects the covariance function. For example,
the covariance function for an isotrepic random field on & rectangular lattice is a Toeplitz
function of botl. the abscissae and the ordinates, leading to a Toeplitz-block-Toeplitz co-
variance matrix in the two-dimensional discrete Wiener-Hopf equation. The multichannel
Levinson algorithm can be used on this system.

However, the covariance function for an isotropic random field on a polar raster is a
Toeplitz-plus-Hankel function of the radii and a Toeplitz function of the angular arguments,
leading to a block Toeplitz-plus-Hankel covariance matrix in the two-dimensioual discrete
Wiener-Hopf equation. The multichannel Levinson algorithm cannot be used to solve this
problem—only the new algorithm of this section is applicable.

Remarkably, the basic recurrence for this algorithm is essentially a discrete version of
the continuous-parameter differential form, with the Laplacians becoming discrete Lapla-
ciaus and the integral becoming a sum. This is remarkable since the explicitly discrete
algorithm is an ezact solution to the discrete problem, rather than just a discretized form
of the continuous algorittm. In the continuous limit, the discrete aigorithm approaches
the continuous differential form, as expected.

Details are given in Appendix C, which consists of the pz per: W.-H. Fang and A.E. Ya-
gle, “Discrete Fast Algorithms for Two-Dimensional Linear Prediction on a Polar Raster,”
to appear in IEEE Trans. Signal Processing, vol. ASSP-40, no. 6, June 1992. This
includes a discussion of application to isotropic and other random fields, details of the

reduction to the continuous case, and resulting simplifications.




4.4 Three-Dimensional Block-Toeplitz-Plus-Hankel Systems

The three-dimensional discrete version of this algorithm solves the linear prediction
problem for three-dimensional random fields defined on a spherical raster. The covariance
must be a Toeplitz-plus-Hankel function of radius and of the two angular arguments; a
time-varying random field that is wide-sense stationary in time has this property.

This result is a direct extension of the 2-D algorithm. For a summary and derivation

of this algorithm, see Appendix D.

4.5 One and Two-Dimensional Discrete Bellman-Siegert-Krein (BSK) Re-

solvent Identities

Kailath [10] has note the applicability of the BSK resolvent identity to computing
one-dimensional smoothing filters from prediction filters. We have developed a discrete
version of Kailath’s result, and numerically implemented it. We have also developed a two-
dimensional discrete version of the BSK relating the prediction filters for two-dimensional
random fields on a polar raster to the smoothing filters for such random fields. The two-
dimensional discrete algorithm has also been successfully implemented numerically.

The significance of this result is noted in #3.6 below, in which the improvement in
using smoothing filters instead of prediction filters is demonstrated on several examples.
For a polar raster with NV points along each of N radial directions, the number of multi-
plications needed to compute the smoothing filter is reduced from O(N®) using Gausssian
elimination to O(N*), if the algorithm in #3.4 is used to compute the prediction filters
and the discrete BSK algorithm is then used to compute the smoothing filters.

De* .uic are given in Appendix E, which consists of the paper: W.-H. Fang and A.E.
Yagle, “Fast Algorithms for Linear Least-Squares Smoothing Problems in One and Two
Dimensions using Generalized Discrete Bellman-Siegert-Krein Resolvent Identities,” to ap-
pear in IEEE Trans. Signal Processing, vol. ASSP-40, no. 6, June 1992. It includes details
of the reduction to the continuous case, and resulting simplifications. The continuous case
is treated in [10] for the one-dimensional case, and in Section 5 of Appendix A for the

three-dimensional case.




Part II: Algorithms for Covariance and Spectral Estimation
4.6 Structured Estimation of Covariances

This second part covers research into estimating an unknown covariance, with the
(block) Toeplitz-plus-Hankel structure required by the above algorithms, from 1-D or 2-D
time series data. In this section we discuss covariance estimation; in the next, spectral
estimation.

There has been much work on this problem for estimating stationary covariance func-
tions from data. A common procedure is to estimate autocorrelation lags from the data,
form a covariance matrix, and then “Toeplitzify” it by averaging along the diagonals of
the covariance matrix. This procedure projects (defined from the Hilbert-Schmidt inner
product) the data lag matrix onto the subspace of symmetric Toeplitz matrices.

We have extended this approach. We have derived an algorithm that projects the
data lag matrix on the subspace of symmetric Toeplitz-plus-Hankel matrices. This sub-
space is computed using a Gram-Schmidt orthonormalizatiou. The procedure finds the
closest (Hilbert-Schmidt norm) symmetric Toeplitz-plus-Hankel matrix to the given data
lag matrix. Unfortunately, this procedure is more complicated than simply averaging
along diagonals. The Toeplitz projection is found this way; however, the Hankel part of
the projection requires weighted sums of some data lag matrix elements.

Due to the complexity of this algorithm, we have developed a second algorithm that
truly generalizes the “Toeplitzation” of averaging along diagonals into a “Toeplitz-plus-
Hankelization” of averaging along diagonals and antidiagonals. The resulting estimated
Toeplitz-plus-Hankel matrix has slightly more structure than required, but the algorithm is
much simpler than the first algorithm. In addition, constraints such as positive definiteness
and rank constraints can be incorporated into a slightly different but equivalent form of
this algorithm. Finally, a two-dimensional version of this latter algorithm has also been
derived.

Details are given in Appendix F, which consists of the paper: W.-H. Fang and A.E.
Yagle, “Two Methods for Toeplitz-plus-Hankel Approximation to a Data Covariance Ma-
trix,” to appear in IEEE Trans. Signal Processing, vol. ASSP-40, no. 6, June 1992.
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4.7 2-D Spectral Estimation on a Polar Raster

We consider the following spectral estimation problem. A zero-mean homogeneous
random field is defined on a polar raster. Given discrete sample values inside a disk of
finite radius, estimate the field’s power spectral density using a linear prediction model.

Issues arising here include: (1) estimation of covariance lags; (2) extendibility of
a finite set of lag estimates into a positive semi-definite covariance extension (required
for a meaningful spectral density); and (3) in the lack of performing such an extexnsion,
guaranteeing a non-negative spectral density.

Recall that the covariance extension property does not hold on a rectangular raster.
However, we give a generalized autocorrelation procedure that guarantees a positive semi-
definite covariance extension. It first interpolates the data using Gaussians, computes
its Radon transform, and then applies one-dimensional spectral estimation techniques to
each slice. We show that if each 1-D set of covariance lags is positive semi-definite, then
the extended covariance is also positive semi-definite, so that the 2-D spectral estimate is
non-negative and hence meaningful.

The correlation matching property that the extended covariance lags should match
the given covariance lags holds in the Radon domain, but not in the spatial domain. We
also propose a second algorithm that: (1) matches the given covariance lags; and (2)
gives a positive semi-definite extension of them, when this is possible. We also discuss
circumstances when this is impossible, shedding some light on 2-D covariance extension.

Details are provided in Appendix G, which consists of the paper: W.-H. Fang and A.E.
Yagle, “Two-Dimensional Linear Prediction and Spectral Estimation on a Polar Raster,”

submitted to JEEE Trans. Signal Processing.
4.8 VLSI Implementations of Fast Algorithms

The generalized Levinson and Schur algorithms in Part I are amenable to parallel
implementation. The similarity of their recursions to finite difference equations suggests
that VLSI implementations for finite differences might be applied to these algorithms. This
turns out to be the case, although some changes are required, and certain special cases

allow simpler implementations.
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Details are provided in Appendix H, which consists of the paper: W.-H. Fang and
A.E. Yagle, “A Systolic Architecture for New Split Algorithms for Arbitrary Toeplitz-
plus-Hankel Matrices,” submitted to JEEE Trans. Signal Processing.

4.9 Linear Predictive Coding and Smoothing of Random Fields

The two-dimensional discrete algorithm for random fields on a polar raster has been
applied to linear predictive coding of isotropic random fields on a polar raster. One appli-
cation is in storing images defined on a polar raster (e.g., tomographic data and spotlight
synthetic aperture radar data)-storing the residuals, instead of the original image, requires
much fewer bits.

The results of using the algorithm are compared with the much simpler procedure
of using linear predictive coding independently along each radial slice; this amounts to
assuming each radial slice of the image is independent of each other slice. This is of course
not true for an isotropic random field, and our results show the significant improvement
in image compression ratio using the two-dimensional algorithm.

The two-dimensional algorithm is also applied to smoothing isotropic random fields,
in order to reduce noise. This has obvious applications in any setting in which the data
consists of noisy observations of a random field. First the prediction filter alone is used
to estimate the random field (this is analogous to using previous two-dimensional least-
squares filters derived using quarter-plane causality on a rectangular lattice). Then the
smoothing filter, derived using the two-dimensional discrete BSK equation, is employed.

The results show considerable improvement (about 8 db) in signal-to-noise ratio when
the smoothing filter is used, and about 1 db improvement when the prediction filter is used
alone. This demonstrates the importance of the BSK equation-the smoothing filters are
indeed necessary.

The results are given in more detail in Appendix I.
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ABSTRACT

Fast algorithms for computing the linear least-squares estimate of a three-dimensional
random field from noisy observations inside a sphere are proposed. The algorithms can be
viewed as three-dimensional analogues of the split Levinson, Schur, and lattice algorithms
of linear prediction, since they exploit an (assumed) Toepiitz-plus-Hankel structure of
the double Radon transferm of the random field covariance. Therefore these algorithms
require fewer computations than would solution of the three-dimensional Wiener-Hopf
integral equation. Unlike previous generalized Levinson algorithms, no quarter-plane or
asymmetric half-plane support assumptions for the filter are necessary; nor is the three-
dimensional filtering problem treated as a multichannel (vector) filtering problem.

The algorithms work in three stages. First, the three-dimensional split Schur algo-
rithm computes a potential from the covariance of the random field. This potential is a
three-dimensional analogue of the parameter appearing in the split Levinson algorithm.
Alternztively, the three-dimensional split lattice algorithm may be used to compute the
potential from the canonical spectral factor of the covariance of the observation field.
Next, the three-dimensional split Levinson algorithm computes the Radon transform of
the three-dimensional prediction filter for estimating the random field on the surface of
the sphere of noisy observations. Finally, this filter is used to compute the smoothing
filter for estimating the random field inside the sphere of observations. The algorithms

generalize known results for isotropic, two-dimensional random fields.
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1. Introduction. The problem of computing linear least-squares estimates of three-
dimensional random fiels from noisy observations is important in such fields as meteorol-
ogy and processing of time varying images. The enorinous amount of computat‘on involved
in three-dimensional signal processing requires fast algorithms that exploit any structure
in the problem, and that can be parallelized. The obvious choices of fast algorithms for
computing estimates from covariance information are three-dimensional generalizations of

the one-dimensicnal Levinson, Schur, and lattice algorithms.

Considerable effort has been applied to generalizing the Levinson algorithm to two
dimensions. Although many useful algorithms have been obtained, all of them require some
assumptions about the [lter, i.e., the order in which the data are processed, as opposed
to the random field itself. The filters constructed from existing two-dimensional Levinson
algorithms are required to have quarter-plane support, or asymmetric half-plane support,
or some other such condition, due to the necessity of imposing some well-defined processing
order on two-dimensional data. Another approach is to assume line-by-line scanning,
so that the two-dimensional estimation problem can be reformulated as a multichannel
one-dimensional problem, to which the multichannel Levinson algorithm can be applied.
Although these ussumptions are appropriate for some image processing problems, they are
inappropriate for the general estimation problem. Also, extending these conditions to the

three-dimensional problem is not trivial.

In this paper we take a different appreach. Following [1] and {2] we operate di-
rectly on the three-dimensional Wiener-Hopf integral equation, converting it into a three-
dimensional differential form. A Radon transform converts this form into a coupled system
of partial differential equations that can be nropagated, reconstructing the Radon trans-
form of the soluticn to the integral equation. Alternatively, the differential form can be
propagated directly, without resort to the Radon transform. The coupled system of equa-
tions can be viewed as a three-dimensional, continuous-parameter analogue of the split

Levinson algorithm of linear prediction [3].




The potential required to propagate these equations is obtained from a three-dimensional
analogue of the split Schur algorithm [3]. The split Schur algorithm is initialized using the
covariance of the random field. Alternatively, the potential may be computed by initializing
a three-dimensional analogue of the split lattice algorithm [3]. This algorithm is initialized
using the canonical spectral factor of the double Radon transform of the observation field

covariance.

All of this is a generalization of what the more familiar one-dimensional Levinson,
Schur, and lattice algorithms do, except that the potential function, rather than reflection
coeflicients, characterizes the optimal filters. Our nomenclature for the three new algo-
rithms thus follows function, rather than form, although there are some marked similarities

in form as well.

The procedure proposed here has three stages. The random field covariance is as-
sumed to have a three-dimensional displacement property (equation (3-7) below), so that
its double Radon transform has Toeplitz-plus-Hankel structure. Either the random field
covariance, or the canonical spectral factor of the covariance of the observation field, may
be used to initialize the three-dimensional split Schur or lattice algorithms, respectively.
Both of these algorithms compute a three-dimensional version of the potential parameter
appearing in the one-dimensional split Levinson, Schur, and lattice algorithms [3]. Next,
this potential parameter is used in the three-dimensional split Levinson algorithm to com-
pute the Radon transform of the filter for estimating the random field on the surface of a
sphere of noisy observations. Finally, the smoothing filter for estimating the random field
inside the sphere of observations is obtained from this filter. A similar approach was used
for one-dimensional random fields with Toeplitz covariances in [4], and for two-dimensional

isotropic random fields in [5].

It is important to emphasize that NO assumptions are made on the order of processing
of the data. The filters themselves are generated recursively, but the data is not processed

in any specific order. The fast algorithm is due entirely to the displacement property
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(3-7) of the random field covariance, which is the three-dimensional generalization of the
Toeplitz structure exploited by the one-dimensional Levinson and Schur algorithms.

The numerical performance of the new algorithms has not yet been studied, and so
they should be viewed as only proposed numerical procedures. However, the insight these
algorithms give into the three-dimensional estimation problem, and the way in which they
demonstrate how results for one-dimensional and isotropic two-dimensional random fields
generalize to three dimensions, is of some interest.

The paper is organized as follow. Section 2 quickly reviews the one-dimensional split
Levinson, Schur, and lattice algorithms of [3]. Section 3 specifies the problem in de-
tail, discusses the generalized displacement property (3-7), and quickly reviews the Radon
transform. Section 4 derives the differential form of the three-dimensional Wiener-Hopf
integral equation, and deri es new fast algorithms to obtain the three-dimensional split
Levinson, Schur, and lattice algorithms. Section 5 notes how the smoothing filter is ob-
tained, and summarizes the three-stage procedure. Section 6 concludes by summarizing
the paper and noting directions for possible future research. Some derivations are relegated

to Appendices.

2. The One-Dimensional Split Algorithms. We quickly summarize the one-
dimensional split Levinson, Schur, and lattice algorithms of (3], and discuss briefly their
scattering interpretations. It should be noted that these algorithms arise in the contexts
of inverse scattering {6], network synthesis (7], and orthogonal polynomials [8]. For a

historical overview of their place in estimation theory, see [9].

2.1 Classical Levinson Algorithm. Consider the one-dimensional linear prediction
problem of estimating the present value of a zero-mean, stationary, discrete-time random
process z(i) from observations {z(j),i—n < j < i—1)} of its past n values. It is well known
that the optimal linear prediction filter coefficients can be obtained using the Levinson

algorithm. Let R(z) be the z-transform (where z is the unit delay operator) of one side of
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the covariance sequence of z(i). Then the nth-order prediction error filter An(z) can be

recursively computed as follows [10}:

][ )
kni1 = —An(2)R(2)/(z" " Pn)l:=0 (2 -1b)
P, =(1-k2)P._, (2 - 1¢)
Ao(z) = Bo(z) = 1 (2 - 1d)

In (2-1b) and the sequel, the notation f(z)|;=¢ denotes the constant term in the Laurent
expansion of f(z). Equations (2-1) also recursively compute the backwards prediction error
filter B,(z). This is the error filter for estimating z(: — n — 1) from its future n values
{z(j)i—n<j<i-1}.

The {ki,: = 1...n} characterize the optimal prediction filters of all orders up to n:
given {k;,i = 1...n}, (2-1a) could be used to compute all of the prediction error filters
{Ai(z),7 = 1...n}, even though the latter have a total of n(n + 1)/2 coefficients. The
k; are called reflection coefficients, since equations (2-1) can be implemented on a lattice
filter in which signals in one rail are scattered into the other rail, with gain k; in the ith
section of the lattice [11]. This is illustrated in Fig. 1.

Note that the signal propagation in the lattice filter (Fig. 1) is similar to the wave
propagation in a one-dimensional scattering medium probed with an impulsive wave at
the left end. In this case k; is the reflection coefficient a. the ith interface, which reflezts
part of the wave travelling in one direction into the wave travelling in the other direction.
The connection between one-dimensional scattering and linear prediction has been noted
in [6] and [12]; as we shall see, this connection generalizes to three dimensions [13].

In the Levinson algorithm the reflection coefficients k; are computed using (2-1b),
which is called the “inner product” computation. Equations (2-1) require 3n multiplica-

tions; one-third of these are in (2-1b). Worse, this is a non-parallelizable computational
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bottleneck; it would be desirable to avoid this computation if possible. This motivates the

next two algorithms.

2.2 Classical Schur Algorithm. If the recursions (2-1a) are initialized using R(z)
instead of (2-1d), the result is the Schur algorithm [14]:

[U“(z)} _ [ 1 zk,,] [U,,_,(z)] 2 - 20

Dn(2) kn 2z Dy-1(2)
kn+1 = =Un(2)/(2Dn(2)):=0 (2 -2
Do(z) =1+ R(z); Uop(z) = R(2) (2-2¢)

The Schur algorithm can be stated in several different forms; we chose this form so
that the recursions (2-2a) match (2-1a). In comparing (2-2) with [3], we have Ux(2) =
Z;::_H ex,jz’ and Di(z) = Z;:: ek,k—;2’ for the e; ; and n of [3].

The scattering interpretation of the Schur algorithm is as follows. The Schur algorithm
propagates the waves in the lattice structure of Figure 1 resulting from an impulsive
initialization (the “1” in (2-2c)) at its left end. Hence it computes the k; from the reflection
response R(z).

Note that in the Schur algorithm the k; are computed using (2-2b), which is not
an “inner product” computation (it requires only a single division). Hence the Schur
algorithm can be propagated ia parallel with the Levinson algorithm, solely for the purpose
of computing the reflection coefficients k;, and thus avoiding the inner product (2-1b)

required by the Levinson algorithm alone [15].

2.3 Classical Lattice Algorithm. Now let X(z) be the spectral factor of the two-

sided covariance sequence of z(1), i.e.,
1+ R(z)+ R(1/2) = X(2)X(1/=2). (2-3)

If the recursions (2-1a) are initialized using X (z) instead of (2-1d), the result is the lattice
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algorithm (16]:

Fa(2) | _ |1 zkn Fn(2) _4g
] R Pl o] (2= de)
knt+1 = =Xn(2)Gn(1/2)/ (2" Pa)lz=o (2 —4b)
P, = (1 - krzx)Pn—l (2 - 4c)
Fo(z) = Go(2) = X(2) (2 - 4d)

Note that in the lattice algorithm an “inner product” computation (2-4b) is required.
Hence its only advantage cver the Levinson algorithm is that, given knowledge of X(z2)
instead of R(z), it avoids the computation (2-3).

The scattering interpretation of the lattice algorithm is as follows [17]. The lattice
algorithm propagates the waves in the lattice structure resulting from an impulsive initial-
ization at its right end. Hence it computes the k; from the transmission response X(z).

The reflection response R(z) and trensmission response X (z) are related by (2-3) [18].

2.4 Split Levinson Algorithm. There is some redundancy in the above algorithms.

Defining h,(z) from (2-1a) as
ha(z) = An(2) + 2Bqa(2) (2-5)
it may be shown using (2-1) {3] that k,(z) satisfies the three-term recurrence
hn+1(2) = (2 + D)ha(2) — zanhn-1(2) (2 — 6a)
ho(z) =1+42; h_y(z)=2 (2 - 6b)
and that a, may be computed using
an = vn/vaZl; vp = R(2)ha(2)/2"F =0 2-7)

Equations (2-6) and (2-7) constitute the split Levinson algorithm. h_,;(z) is defined from

(2-5) to initialize the three-term recurrence. 'The point is that the two coupled recursions

8




(2-1a) are replaced by the three-term recurrence (2-6). Since (2-6) only requires n multi-
plications, while (2-1a) requires 2n, using (2-6) saves 50% of the multiplications. However,
note that an “inner product” computation (2-7) is still required at each recursion.
The {a;} characterize the optimal filters of all orders just as the {k;} do; indeed we
have (3]
an = (14 kn)(1 = kn-1). (2-8)

Also, the quantity Sn(z) = hn(z)/w", where w = z!/2, satisfies
Sn+1(2) + Sn-1(2) = (w + 1/w)Sn(2) = VaSn-1(2) (2 - 9a)
Va=1-an (2 - 9b)

Equation (2-9) has the form of a discrete Schrodinger equation [19]. Since a scattering
interpretation can be assigned to the lattice-based algorithms, a reformulation of these
algorithms in terms of a discrete Schrodinger equation is not surprising.

Note that the scattering potential V, is simply 1 — a,; in the sequel we refer to
a, as a potential. Thus the split algorithms can be interpreted as propagating the field
quantitites (voltage, pressure, etc.) associated with the scattering medium, while the
classical algorithms propagate waves in the scattering medium. For more details see [17].

Since the decomposition of the field quantity into forward and backward travelling
waves is not possible in three dimensions, only the split algorithms can be generalized to
three dimensions. The potential V,, defined in (2-9b) generalizes to three dimensions (see

(4-2) below), but there are additional dependencies in it.
2.5 Split Schur Algorithm. Defining v,(z) from (2-2a) as

vn(2) = Un(z) + 2Dn(z2) (2-10)

it may be shown using (2-2) [3] that v,(z) and a, can be computed using the split Schur

algorithm:
Un41(2) = (z + Dva(z) — zapvn-1(2) (2 —11a)
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an = V3/00TE; 02 = va(2)/z™* 1m0 (2 - 118)

vo(z) = z + R(2) + zR(z); wv-1(2z) =1+ 2R(2) (2 -11¢)

v—1(z) is defined from (2-10) to initialize the three-term recurrence. In comparing (2-11)
with (18) of [3], note that vi(z) = Z;::“ Vk,j—k—12’ for the v; ; and n of [3].

As with the Levinson algorithm, the split Schur algorithm (2-11) requires onl;" 53%

as many multiplications as the classical Schur algorithm (2-2) Also, note that there is

no “inner product” computation, so that the split Levinson and Schur algorithms can be

propagated together, with the split Schur algorithm replacing the “inner product” (2-7).

2.6 Split Lattice Algorithm. Defining u,(z) from (2-4a) as
un(2) = Fa(2) + 2Ga(2) (2-12)

it may be shown using (2-4) [3] that u,(2) and a, can be computed using the split lattice

algorithm:
un41(2) = (2 + 1)ua(2) — 28,8n-1(2) (2 -13a)
an =vn/vp71;  vp = un(2)ua(1/2)]s=0 (2-130)
wo(z) = (1 + 2)X(2);  u-i(z) = 2X(2) (2 - 13¢)

u—1(2) is defined from (2-12) to initialize the three-term recurrence. Again (2-13a) requires
only 50% as many multiplicztions as (2-4a). However, the “inner product” (2-13b) is still
necessary. Civen knowledge of X(z), instead of R(z), the split lattice algorithm could be

used to compute the k; without the computation (2-3).

2.7 Continuous Parameter Forms. The continuous-parameter form of the three-
term recurrence (2-6) (and also (2-11a) and (2-13a)) is determined by noting that (2-6)
is related to a discrete Schrodinger equation (2-9a) by a simple delay. The continuous-

parameter Schrodinger equation in the time domain is
& &
—_—— = -14
(327 ~ 5o @) = V(@h(zy) (2-14)
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where h(z,y) is the continuous-parameter version of h,(2) (y is time). Equation (2-14)
describes a continuous one-dimensional scattering medium with continuous scattering po-
tential V(z) (the continuous version of (2-9b)). It is also the equation for a vibrating,
elastically-based string '-sed in [4] for one-dimensional linear estimation problems.

In the following sections the three-dimensional version of (2-14) is used for three-
dimensional linear estimation problems. It should be clear why this can be construed
as a three-dimensional, continuous-parameter analogue of the three-term recurrences that

constitute the one-dimensional split algorithms.
3. Basic Equations
3.1 Problem Specification. The basic problem is as follows. Let
w(z) = s(z) +v(z), z€ R 3-1)
be some noisy observations of a zero-mean real-valued random field s(z) having covariance
E[s(z)s(y)] = k(z,)- (3-2)
v(z) is a zero-mean real-valued white noise field with covariance
Ev(z)o(y)] = 8(z — y) (3-3)

and v(z) is uncorrelated with s(z).

We wish to compute the linear least-squares estimate 3(z) of s(z) given the noisy
ob:~rvations w(z) inside a sphere of radius T, i.e., given {w(y), |y] < T}. To be exact, we
wish to compute the conditional mean E[s(z)|W], where W is the Hilbert space spanned
by {w(y), |y| < T}. The estimation problem then reduces to computing the optimal filter
¢(z,y; T), which in turn yields 3(z) by

T
i(z) = / oz, v; Thw(y)dy = / /s oz, lyle; Tyw(lyle)lyPdedlyl, || <T. (3—4)
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Here S is the unit sphere and y = |yle, where € is a unit vector. de is the differential area
on the surface of the unit sphere S; in standard spherical coordinates de = sin df d¢.
By the orthogonality principle, g(z,y;T) solves the three-dimensional Fredholm integral

equation of the second kind
T
k@) =9 u D)+ [ [ d@raTkeyridedr, 0<ELMST  (3-53)
o Js

Most of this paper will be concerned with the intermediate problem of computing the
linear least-squares estimate of s(z) given the noisy observations {w(y), |y| < |z|}. This is
the filtering problem of estimating s(z) on the surface of the sphere of observations. It can
also be viewed as the three-dimensional analogue of the linear prediction problem solved
by the Levinson algorithm in one dimension. The forward and backward predictors for
either end of the segment of observations generalize to the predictors for all points on the
surface of the sphere of radius |z|. |

The optimal filter for this problem is k(z,y), for which the Fredholm integral equation

(3-5) becomes the Wiener-Hopf integral equation

Kz,y) = hz,y) + ] W k(). ] < fzl. (3-6)

lz1<1z)
Without loss of generality, we define h(z,y) = 0 for |y| > |z|. h(z,y) can be viewed as
the analogue of a continuous-parameter quarter-plane autoregressive filter, except that the
causality is defined in terms of |z| and |y|, so that there is no “corner” and no ambiguity
over in which direction to proceed. In Section 5 we show that g(z,y; T), the ultimate goal,
can be obtained easily from A(z,y).
The function k(z,y) is assumed to be positive definite, and it is assumed to have the

generalized displacement property [13]
(Az — Ay)k(z,y) =0 B-7)

where A, is the Laplacian with respect to z € R3, and similarly for A,. Equation (3-

7) is a direct generalization of the Toeplitz-plus-Hankel structure exploited by the one-
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dimensional Levinson, Schur, and lattice algorithms. The structure (3-7) of the covariance
makes possible fast algorithms for solving the integral equation (3-6).

The structure of k(z,y) implied by (3-7) reduces the number of degrees of freedom
in the function k(z,y) from six to five. This is still far more general than the case of a
homogeneous random field having covariance k(z — y) (three degrees of freedom) treated
in (1], or the case of an isotropic random field having covariance k(|z - y|) (one degree
of freedom) treated in [5]. Note that both homogeneous and isotropic random fields are
included as special cases of the property (3-7). Note also that not all three components
of z and y need refer to spatial variables; a two-dimensional time-varying random field
whose spatial covariance satisfies the two-dimensional version of (3-7), and which is also

stationary in time, would satisfy (3-7).

3.2 The Radon Transform. The Radon transform will be used extensively through-

out this paper. The Radon transform of a function f(z),z € R® is defined as

RUOMrre) = flre) = / F(2)8(r - e~ z)dz (3-8)

so that it is the integral of f(z) over the plane r = e - z. Note that f(r,e) = f(—r1,—e).

The inverse Radon transform is

P 1 © 5 .
flz)=R ‘{f(-,-)}(a:)=—87/5'/0 wf(r,e)é(f—e-r)drde (3-9)

A good treatment of the Radon transform is [20).

An important property of the Radon transform is the projection-siice theorem [20]

R{fC)Hr €) = Foj AFemquie{f(2)}} (3-10)

Here fﬁl‘—. , denotes a one-dimensional inverse Fourier transform taking |k| into 7, with |k|
extended to negative values by conjugate symmetry. F;_,z|. denotes a three-dimensional

Fourier transform taking z € R? into |kle.
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Another important property, which is the motivation for using the Radon transform
in this paper, is [20]
R{BSONr,e) = ZERAFN (e (3-11)
Using (3-11), it may be shown that a covariance function satisfying (3-7) will have a
Toeplitz-plus-Hankel structure in the double Radon transform domain. To see this, take
the double Radon transform of (3-7). This gives

d? 8\ .
(5,.?_3_1.22) k(r1,72,€1,€2) =0 (3 —12a)
E(le T2,€1, 62) = Rz—.n,qRy_.,-,,e,{k(z,y)}. (3 -— 12b)

where R;—r, ., denotes the Radon transform taking z € R? into (71,e;). This in turn

implies the existence of functions k;(-) and &;(-) such that
’2(7’1,7’2, 61,62) = 121(1'1 - 72,61,62) + ’:32(7'1 + Tz,el,eg) (3 - 13)

i.e., that I::(‘rl,‘rz,el,eg) has Toeplitz-plus-Hankel structure. This is the structure that
makes possible a fast algorithm solution to (3-6).

4. Three-Dimensional Split Algorithms. In this section fast algorithms for
computing the filter h(z,y) from the covariance k(z,y) are derived. These algorithms
are three-dimensional analogues of the split algorithms discussed in Section 2. The basic

recursion is a three-dimensional generalization of (2-14).

4.1 Differential Form of the Wiener-Hopf Equation

A. The Differential Form tn z and y

Applying the operaior (A; — A,) to the integral equation (3-6) and using the gener-
alized displacement property (3-7), Green’s theorem, and the unicity of solution to (3-6)
when k(z,y) is positive definite and both k(z,y) and h(z,y) are L? yields, after some

algebra (see Appendix A),
(Br = Aph(z,y) = /s V(z, e)h(lzle,y)lal*de (4-1)
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where the non-local filter potential V(z,e) is defined as

V(z,e) = —Wa'—x—‘)x]zh(:c, |z]e). (4-2)

Note that although the Wiener-Hopf equation (3-6) is only valid for |y| < |z], the differen-
tial form (4-1) is valid for all z and y, since for |y| > |z| we have trivially 0 = 0. Equation
(4-1) is a direct generalization of (2-14) to three dimensions; the only difference is the
extra dependence in the potential V(z,e). Even this is not surprising; since k(z,y) has
five degrees of freedom, h(z,y) does aiso, and thus the potential function characterizing
the h(z,y) must also have five degrees of freedom.

B. The Three-Dimensional Split Levinson Algorithm of [1]

In [1] the differential form (4-1) was propagated recursively in increasing |z| and
lyl < |z|, yielding h(z,y). At each recursion, the potential V(z,e) was obtained directly
from the integral equation (3-6) using k(z,y) and the previously computed values of k(z,y),
as follows:

V(z,e) = —ﬁd—l"ﬂlxlz (k(z, (zfe) -

h(z,z)k(z, [a:[e)dz) (4-3)
lz1<]z]

The fast algorithm proposed in [1] for homogeneous random fields is as follows. Equation
(4-1) is discretized into a three-term recurrence in increasing |z| and [y[, and propagated
along with (4-3). The recursion pattern for updating h(z,y) in |z| and |y| using the
discretized (4-.) is illustrated in Fig. 2.

Note that (4-3) is necessary to compute V(z,e), since the boundary values h(z, |z|e)
and their gradients appearing in (4-2) cannot be computed using (4-1) alone, due to the
support of h(z,y). Examination of the recursion pattern illustrated in Fig. 2 makes this
clear. This is analogous to the one-dimensional Levinson algorithm, in which ky, is the
coefficient of 2™ in A,(z); this coefficient is not computed by (2-1a), so that (2-1b) must
also be used.

The computation involved in (4-3), which is a three-dimensional analogue to the “inner

product” computation (2-7) in the one-dimensional split Levinson algorithm (but much
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worse), is excessive. Furthermore, it would be desirable not to have to compute Laplacians
in both z and y. The former computation can be avoided using three-dimensional split
Schur or lattice algorithms (see 4.3 and 4.4 below). The transverse part of the Laplacian

in y can be eliminated using the Radon transform, as we now demonstrate.

4.2 Three-Dimensional Split Levinson Algorithm

A. The Differential Form in z and t

Since (4-1) holds for all z and y, we can perform a Radon transform of (4-1) taking y
into ¢t and e;. Using (3-11), this yields

(A - %)iz(z,t, €)= LV(::, e)h(|zle,t, e;)|z) de (4-4)

Equation (4-4) describes a continuous three-dimensional scattering medium with non-local
scattering potential V(z,e). Aside from the non-local nature of the potential, equation
(4-4) is a direct generalization of (2-14) to three dimensions.

Next, note that the Laplacian operator A can be written as

lig 2 0

= il T -
8= o el oE T8 (4-9)
where
r__1 9 ( ing 2 1 _& -
AT = |z|? sin 6§ 08 smaa@ + |z)? sin? ¢ O¢? (4-6)

is the transverse radial Laplacian operator in spherical coordinates. Equation (4-4) can

now be written as

{(ai:l, + Ti—ialaxl) - gf—z} h(z,t,e) = H(z,t,e:) 4-1)
where
H(z,t,e;) = -ATh(z,t,e;) + /sV(z,e)ﬂ(|:|e,t,e;)|x|2de (4 -8)
is an auxiliary quantity. Equations (4-7) and (4-8) can be combined into
# P\ . , -
(5027 — ) lelhtas i) = Il | Vi@, hlelest enlelde - AThz, te) (4-9)
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Equation (4-9), which is the heart of the three-dimensional split Levinson and lattice
algorithms, should be compared with (2-14).

B. Three-Dimensional Split Levinson Algorithm

The three-dimensional split Levinson algorithm consists of (4-9), propagated as a re-
currence in discretized |z| and ¢, and the Radon transform of (4-3). The recursion pattern
for updating h(z,, e;) using the discretized (4-9) is illustrated in Fig. 3. The discretized
(4-9) has the same form as the discrete Schrodinger equation (2-9a), except for the following
differences:

1. A separate set of recurrences is required for each e; and e, = z/|z|. The recurrences
are independent, and completely parallelizable;

2. The simple multiplication by the potential in (2-9a) and (2-14) becomes a integration
over the unit sphere;

3. h(z,t,e;) and H(z,t,e;) are weighted by |z|, since the recursion is in the increasing
radius |z| of a sphere;

4. The transverse Laplacian AT must be computed at each recursion. Since this involves
only values of A(z,t, ;) on the surface of the sphere of radius |z|, this can be done at
each recursion. It should be noted that since differentiation is numerically unstable,
some regularizing procedure will be needed for this computation.

5. The inverse Radon transform of fz(z,t, e;) must be computed at the end of the proce-
dure.

C. Computation of Boundary Values on t = £|z|

Since h(z,y) = 0 for |y| > |z|, we have h(z,t,e;) = 0 for t > |z|. This follows since the
plane t = e; - y passes only through values of y such that |y| > t > |z|, and h(z,y) = 0 for
such values. Since the characteristics of (4-9) are t = =+|z|, the recurrence relation (4-9)
will determine A(z,t,e;) for all —|z| < ¢ < |z, and all non-zero values of h(z,t,e;), except
for t = %|z|, will be computed.

The points on the characteristics ¢ = +|z| that are not computed in the course of the
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recurrences (4-9) can be found using

iz(x,t = —|z|,€i) = il(:r:,t = |z, —e;) (4 — 10a)
0 0 F = ) = 3 '
(b—l;—l + 5;) |$lh(z,t - Izl,e.) = —lzi V(z, C:)/? (4 —10b)

where the latter is derived in Appendix B using (4-2). Note from (4-10b) that again V(z,¢)
is not computed as part of the recursions (4-9)-it must be supplied separately, using the
Radon transform of (4-3). Also, using (4-9) and (4-10), it can be seen that knowledge of
V(z,e€) suffices to compute h(z,y). Thus the potentials V(z,e) characterize the optimal
filters, just as the reflection coefficients do in the one-dimensional case.

As in the one-dimensional case, we now show how three-dimensional split Sct . and
lattice algorithms may be used to avoid the computation (4-3) in the three-dimensional

split Levinson algorithm.

4.3 Three-Dimensional Split Schur Algorithm. The split Schur algorithm must
be propagated in z and y, rather than in z and ¢t. The reason for this is that the Schur
algorithm propagates the convolution of the prediction error filter and the observation
field covariance, which is zero for |y| < |z| by the orthogonality principle. However, the
triangularity property of being zero for |y| < |z| does NOT map to the Radon transform
domain. This is unlike the Levinson algorithm, in which k(z,y) = 0 for ly| > |z| implies
h(z,t,e) = 0 for t > |z]. Since the triangularity property is the essential structure of the
Schur algorithm (in one or three dimensions), we are forced back to the z — y domain.

A. Differential Form in z and y

In this section we define the residual error filier ¢(z,y), the residual x(z,y), and we
show that both satisfy the differential form (4-1). In doing so we make use of propagation
of singularities arguments, in which coefficients of different orders of singularities (delta
functions, doublets, etc.) are equated. This can be viewed as equating coefficients of s
in Laurent expansions of Laplace transforms; similar reasoning is used to derive transport

equations. For more details see [22].
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First, we must dfine the spectral density M(k,e;,ez). The structure (3-7) of k(z,y)
implies that its double Fourier transform is zero except for its on-shell values. Mocre

specifically, the covariance of the observation field w(z) has the property that
Frmkyen Fymkae{6(z = y) + k(2,9)} = M(ky, e1,€2)8(1k1]* — |k2|?) (4-11)

for some function M(k,e;,ez2).

As an aside, note that the projection-slice theorem (3-10) implies that
k(r, 2, e1,e2) = Frll, Fole,, {M(ki,e1,e2)8( ki 1? = [k2|*)}

= ki(m1 — T2, €1, €2) + k(1 + 72,1, €2) (4 -12)

so that IE(TI ,T2,€1,€2) has Toeplitz-plus-Hankel structure in the double Radon transform
domain, in agreement with (3-13).

Next, define the residual filter ¢(z,y) as

¢(z,y) = §(z — y) — h(z,y) (4-13)

#(z,y) converts the observation field w(z) into the residual field w(z) - 3(z|w(y), ly| = |z]).

Finally, define the residual x(z,y) as

x(z,y) = / 8(z,2)(6(z - v) + k(z,¥))dz (4-14)

x(z,y) is the convolution of the prediction error filter and the observation field covariance,

just as in the one-dimensional case. Using Parseval’s theorem on (4-14), we have
X(z, ka2, €2) = Fyky,ea {x(z,9)} =//S¢(1,ks,Cs)M'(kz,82,63)5(|k2|2-|k3|2)|k3|2d63 dks

=/¢(I,kz,es)M'(k2,€2,€3)|k2|2463 (4 - 15)
s

We now show that #(z,y) and x(z,y) both satisfy (4-1). Apply the operator A; - A,
to (4-13), and recal' that h(z,y) = h(z,y)1(|z] — |y|), where 1(-) is the unit step or
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Heaviside function (this expresses the support constraint for h(z,y)). Equating coefficients
of singularities (delta functions) and using (4-1) and (4-2) shows that ¢(z, y) satisfies (4-1).
Fourier transforming (4-1) with respect to y, and a linearity argument using (4-15), show
that x(z,y) satisfies (4-1) as well.

B. Recursions

By the orthogonality principle we have x(z,y) = 0 for |y| < |z|. Then, since ¢(z,y)

contains an impulse §(z — y), x(z y) must contain one alsc, and thus it has the form

x(z,y) = 6(z — y) + v(z, ¥)1(ly| - Iz]) (4 - 16)

Inserting (4-16) into the differential form (4-1) and equating coefficients of singularities

results in
(82 = By0(av) = [ Vi@ ehu(lale,)islde (4 - 17a)
S

0 0
V(z,e) = -2 (3| BT l) v(z,y = |zle) (4 — 17b)

Equations (4-17) constitute the recursions for the three-dime=sional split Schur al-
gorithm. v(z,y) is propagated in increasing |z] and |y| > |z| using (4-17a), and V(z,e)
reconstructed using (4-17b). The recursion pattern for updating v(z,y) is il'usirated in
Fig. 4. Note that V(z,e) is computed directly by the recursions (4-17a); no “inner prod-
uct” computation is required. The computed V(z,e€) is then inserted in (4-1) or (4-9) to
compute h(z,y) via the three-dimensional split Levinson algorithm, avoiding the “inner
product” (4-3).

C. Initialization

The split Schur algorithm is initialized by setting |z| == 0 in (4-14). This results in

v(0,y) = k(0,y) (4 —18a)

(a1 31) "9 = (21 + a7 00 (4 - 18)
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Note that the dependence of k(z,y) on e = z/|z| for small |z| is needed in (4-18b). This
ensures the five degrees of freedom in the data necessary to compute V(z,e), which also

has five degrees of freedom.

D. Interpretation

The split Schur algorithm propagates x(z,y), which is zero for |y| < |z| by the or-
thogonality principle. This is the stcchastic interpretation. However, the scattering in-
terpretation is mnore illuminating. The form of (4-16) suggests that x(z,y) results from
initializing (4-1) with an impulse in z and y at the origin z = 0, which spreads out in
increasing |z| along the characteristic |y| = |z| (note that |y| plays the role of time). The
jump in v(z,y), the non-impulsive part of x(z,¥y), on this characteristic yields information
about the scattering potential V(z,e).

All of this is analogous to the one-dimensional Schur algorithm; note that for this
type of scattering experiment, the non-local nature of V(z,e) does not affect the support
of x(z,y). Note also that since both the excitation and the measurement takes place at the
origin, tais is a reflection-type inverse scattering problem, as opposed to the transmission-
type problem solved by the lattice algorithm below.

This algorithm is called a three-dimensional Schur algorithm for the following reasons:

1. It solve a reflection-type inverse scattering problem:;

2. It propagates the residuals v(z,y), whose triangular structure stems from the orthog-
onality principle;

3. It is initialized directly with the random field covariance k(z,y);

4. It performs a spectral factorization (see (4-28) below).

4.4 Three-Dimensional Split Lattice Algorithm. In this section we derive two
forms of the three-dimensional split lattice algorithm. One form is propagated in increasing
|z], is initialized directly using the spectral facto- of the covariance k(z,y), and requires

an “inner product.” The other form is propagated in decreasing |z, is initialized at large
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|z| using the spectral factor, and does not require an “inner product.” This second form,
which has no one-dimensional counterpart, exists because the potential V(z,¢€) in (4-2) is
non-local.

A. Spectral Factorization

Since 6(z—y)+k(z,y) is the covariance of w(z), and we are now interested in deriving a
lattice algorithm, we consider the spectral factorization of the spectral density M(k,e;,e2)
defined in (4-11) into (compare to (2-3))

M(k,e1,e2) = /SF(k,el,es)F(k,eg,eg)‘dea (4 -19)
where F(k,e;,ez) is analytic in k in the lower half-plane. This factorization is a Riemann-
Hilbert problem (see (4.1) and (6.9) of [21]); Section 2 of [21] proves, subject to assumptions
about k(z,y) already made, that this problem has a unique solution.

In practice, the spectral factorization (4-19) would never be performed; unless F(k,e;, e3)
is known initially in lieu of k(z,y), there is no point is using the split lattice algorithm. In
this case the split Schur algorithm, initialized using k(z,y), is to be preferred.

B. Recursions

Let ¢(z,k,e1) = Fy—k,e. {#(z,y)}, where ¢(z,y) is the residual filter defined in (4-13).
Define v¥(z, k, ) using

Y(z,k,e1) = /;F(k,el,e2)¢(z,k,e2)deg (4 — 20a)

é(z,k,e1) = /SF‘l(k, e1,e2)¥(z, k,ex)des (4 —20b)
where F~!(k,e;,e;) is the inverse kernel to F(k,e;,e2).
Let $(z, t,e;) and 1/3(::, t, ;) be the inverse Fourier transforms of ¢(z, k, e;) and ¢(z, k, e;).
We showed previously that ¢(z,y) satisfies (4-1), hence &(z,t,e;) satisfies (4-9). And (4
20a) and a ﬁﬁeaﬁty argument shows that y(z,, ;) also satisfies (4-9).
Since F(k,e;,ez) is the canonical spectral factor of §(z —y) + k(z,y), the form of (4-9)
(specifically its characteristic at ¢t = —|z|) implies that ¥(z, ¢, e;) has the form
O(z,t,e;) =6t —e; - z) + u(z, t, &)1(t + |z]) (4-21)

22




To see this, note that ¢(z,t,e;) has support in t on [~|z|, |z]] (since k(z,t,e) does), and
F(k,ey,e2) is causal in the ¢ domain. Examination of the convolution in ¢ implied by
(4 20a) shows that /=, ¢ ¢;) has suppust in t on [—|z], 00, yielding (4-21).

Inserting (4-21) into (4-9) and once again equating coeflicients of singularities results

2 &
(W - @) lzlu(z,t, &) = |z|( /S V(z,e)u(|zle, t, e;)|z|?de — ATu(z,t,e:)) (4 —22a)
Vie —e) = T:FE%"'“(z’t = —lel,e) = “I;zl—s (a% - g;) lzlu(z,t = —|z|,e;) (4 —22b)

Equation (4-22a) has the same form as the three-dimensional split Levinson algorithm
(4-9), and it may be propagated in discretized |z| and ¢ in the same way that (4-9) was.
Equations (4-22) appear in [23] as a proposed fast algorithm for solving inverse scattering
problems with non-local potentials. Compare (4-22b) with (4-2) and (4-10b). ‘

C. Two Three-Dimensional Lattice Algorithms

Equations (4-22) constitute the recursions for the three-dimensional split lattice algo-
rithm. By propagating them in either increasing or decreasing |z|, we get two different
three-dimensional lattice algorithms. The recursion patterns for updating u(z,t,e;) using
(4-22) are illustrated in Fig. 5.

The first algorithm proceeds by initializing u(z,t,e;) at the origin z = 0, using (4-
23) below, and propagating (4-22) in increasing |z|] and t > —|z|. Fig. 5 shows that
V(z, €) is not computed directly by (4-22); an “inner product” combining (4-20b) with the
Radon transform of (4-3) is needed. Because of this, the first algorithm is computationally
inferior to the second algorithm. However, it is analogous to the one-dimensional split
lattice algorithm.

The second algorithm proceeds by initializing u(z,?,e;) for large |z|, using (4-26)
below, and propagating (4-22) in decreasing |z| and t > —|z|. The advantage of this form
is that V(z,e) 1+ now computed directly using (4-22) (see Fig. 5); no “inner product” is

needed. This makes it clearly superior for computation.
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D. Initialization
The first form of the algorithm is initialized by setting z = 0 in (4-20a) and using
(4-21):

u(0,¢,e1) = F~H{(0,k,e;) — 1} = F"l{/sF(k, e1,€ez2)de; — 1} (4 —23)

Note that (4-23) can be viewed as transmission scattering data at the origin.

To initialize the second form of the algorithm we use scattering arguments, following
(13] and [24]. Equation (4-21) shows that ¥(z,t, ;) consists of a probing impulsive plane
wave 6(t — e, - ) and a resulting scattered field u(z,t,e;). For |z| > T, we can write this

in the frequency domain as

P(z,k,e2) = /S S(k,e1,e2)¢(z,—k,—e, )de, (4 —24)

where S(k,e1,ez) is a scattering operator. For large |z|, ¥(z,—k, —e;1) represents solely
the probing plane wave by time causality. Equations (4-20) and (4-24) combine to give
[13),(24]

S(k,e,e2) = /SF"I(k, e1,e3)F(—k,e3,ez)de; (4 — 25)

Inserting (4-25) in (4-24) allows the second algorithm to be initialized for large |z| using
¢(I,k,82) = / / F“l(ksel,63)F(—k1e3a62)e—ikel.zde3 del’ I:BI — 00o. (4_26)
sJs

E. Stochastic Interpretation

The various quantities appearing in the above derivations all have important stochastic
interpretations. We briefly summarize them here; for more details see [13]. ¢(z,y) is
the residual filter that converts the observation field w(z) into the residual field r(z) =
w(z) — 3(z|w(y), |yl < |z|. This residual field can be decorrelated on the circle |y| = |z|
to give an innovations field. x(z,y) is the residual, or the difference between the left and
right sides of the Wiener-Hopf equation (3-6); for |y| < |z| x(z,y) = 0 by the orthogonality

principle.
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F~1(k,e1,e2) is the transfer function of a whitening filter that whitens w(z) to a white
field v(z), while F(k, e;, e2) is the transfer function of a modelling filter that transforms the
white field v(z) back into w(z). Note that F(k,e;,e2) and F~!(k,e;,e;) are both causal in
the double Radon transform domain: F(r, e, e2) = F~Y{F(k,e;1,e3)} is causal in 7. How-
ever, they are NOT triangular in the spatial domain: F(z,y) = F~1F~1{F(k,e;,€3)} #0
for |y| > |z|. Hence the white field v(z) is not an innovations field; it cannot be obtained
from causal filtering of {w(z)}.

¥(z, k, e;) filters v(z) into r(z), as shown by (4-20a): First F(k, e;,e2) dewhitens v(z)
to w(z), then ¢(z,y) rewhitens w(z) to r(z). Also, note that (4-26) is the generalization
of a well-known one-dimensional result [24].

We now show that the three-dimensional split Schur algorithm performs the spectral

factorization (4-19). For large |z|, (4-20b) becomes

é(z, k,e2) ~ /SF“l(k, e1,ez)e ke 2 de; (4-27)
Inserting (4-27) in (4-15) yields

x(z,k,e2) ~ /SF"(k, e1,e2)e” ke T de, (4 —28)

so that x(z, k, ), propagated by the Schur algorithm, converges to the spectral factor of
the observation field. This is a direct generalization of one-dimensional results [14].
These algorithms are called three-dimensional lattice algorithms for the following rea-
sSons:
1. It solve a transmission-type inverse scattering problem;
2. It is initialized directly using the spectral factor F(k,e;,e2) of the random field co-
variance k(z,y);

3. u(z,t,e;) has the same support t > —|z| as the one-dimensional lattice algorithm.

5. Computation of the Smoothing Filter g(z,y;T)
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5.1 Computation of ¢g(z,y) from h(z,y). We now specify the third and final
stage of the estimation problem: the determination of the smoothing filter g(z,y; T) from
h(z,y). Recall that g(z,y;T) is the filter for estimating the random field s(z) from the
set of observations {w(y), |y| < T}. Therefore the computation of ¢g(z,y; T') completes the
solution to the original estimation problem. The material of this section is taken from [1],
and generalizes results in [4] and [5).

Recall that g(z,y; T) satisfies the Fredholm integral equation (3-5), while h(z,y) sat-
isfies the Wiener-Hopf integral equation (3-6). Taking the partial derivative with respect
to T of (3-5), and again using the linearity and unicity of solution properties of (3-6) (the

argument is similar to that in Appendix A) results in the differential form

9 e yiT) = - f o(z, Te; T)h(Te, y)Tde. (5-1)
oT s

Equation (5-1) allows g(z,y;T) to be computed recursively from k(z,y). The boundary
value g(z,Te; T), the only missing value when (5-1) is propagated recursively in increasing
T for all 0 < |z|,|y] < T, can be computed separately by setting y = Te in (3-5). This
yields
T
9(z,Te;T) = k(z,Te) — / / g(z,rer; T)k(re,, Te)ride,dr (5-2)
0 S

which computes g(z,Te; T) from already-computed ¢(z, z; T), |z| < T and known k(z,y).
5.2 Summary of Entire Procedure. The complete, procedure for computing
9(z,y) from k(z,y) or F(k,e;,ez) is as follows:
1. f k(z,y) is known, use it in (4-18) to initialize the split Schur algorithm. If the spectral
factor F(k,e1,ez) is known, use it in (4-26) to initialize the split lattice algorithm;
2. Propagate the split lattice algorithm in decreasing |z|, computing V(z,¢) as the re-
cursion proceeds. Alternatively, propagate the split Schur algorithm in sncreasing
|=l;
3. Propagate the split Levinson algorithm in increasing |z|, using the potential V(z,e)

computed in step 2;
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4. Compute h(z,y) = R-1{h(z,t,¢e;)}. This corresponds to the prediction filter in the
one-dimensional Levinson algorithm, with the prediction order being the size T of the

sphere of observations;

5. Compute g(z,y) from h(z,y) by propagating (5-1) and (5-2).

6. Conclusion. Three-dimensional split Levinson, Schur, and lattice algorithms
for the three-dimensional random field least-squares estimation problem have been ob-
tained. These algorithms directly solve the three-dimensional Wiener-Hopf integral equa-
tion satisfied by the optimal filter, and make no assumptions about the order in which
the three-dimensional data are to be processed. The algorithms are fast since they exploit
the Toeplitz-plus-Hankel structure of the double Radon transform of the covariance of the
observation field w(z), to reduce the amount of computation necessary to solve the integral

equation.

The one-dimensional split algorithms are three-term recurrences that are equivalent
(within a delay) to a discretization of a one-dimensional Schrodinger equation in the time
domain. The three-dimensional algorithms of Section 4 are equivalent to three-dimensional
Schrodinger equations in the time domain, which is why these algorithms are referred to as
three-dimensional split algorithms. The connections between three-dimensional estimation
and inverse scattering problems has been detailed elsewhere [13]; it is worth noting here
that the Wiener-Hopf integral equation (3-6) and the differential form (4-1) both appeared

in an inverse scattering context in [24] and [25].

Some issues that need further research are as follows. The non-local potential V(z,¢)
complicates matters enormously, since it has no one-dimensional analogue and introduces
non-causality. It would be very desirable to be able to characterize the set of ¢ variance
functions k(z,y), or spectral factors F(k, e, e7), associated with a local potential V(z,e) =
V(z)6(z/|z| — €) This would lead to causal algorithms much more like the one-dimensional
algorithms. Elements of this set would have three degrees of freedom, like the set of
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covariance functions associated with homogeneous random fields. We note here that this
is a major unsolved problem in inverse scattering theory; an estimation viewpoint may well

be more appropriate for solving this problem. Another issue is the numerical performance

of these algorithms.
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Appendix A
Derivation of the Differential Form (4-1)
Applying the operator A; — A, to both sides of (3-6) and using the three-dimensional

displacement property (3-7) results in

(Az = AYh(z,y) + A, »/|;|<|z| h(z, z)k(z,y)dz — ‘/qu' h(z,2)A:k(z,y)dz=0 (Al)

where (3-7) has been used again in the last term. Simplifying the middle term and using

Green'’s identity on the last term gives

(Az — Ay)h(z,y) +/

1=1<I

(82 = Ah(z, )Gz, 0)dz = [ Viz,ek(ele, y)lalde (42)
z| S
where V(z, €) is defined by (4-2).
In the integral equation (3-6) let z = |z|e, multiply by |z|2V(z, ¢), and integrate over
S. This gives

Lv@ontzleleter [ [ Viaehtiale, Wz lePdeds = [ Viz,e)k(lale,)lelde.
S jzl<)z} /S S

' (A3)
Comparing (A2) and (A3) shows that these integral equations have the same form, and

are therefore the same equation. Since the operator

K: a(t) - Kt) = / Kt )ale)ds (44)

Jal<)
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defined by the covariance kernel k(z, y) is self-adjoint and non-negative definite, the oper-

ator K + I is invertible. This means that the solution of the integral equation (3-6) exists

and is unique. By linearity, therefore, the solutions of the integral equations (A2) and (A3)

must be identical. Equation (4-1) follows.

Appendix B
Derivation of Equation (4-10b)
Rewrite (4-2) as

Ve blel — i) = -2 (o + 1 + o + 30 ) MenddClel - b (BY)
Using the property of the Radon transform that
o +m) @) =) 2
a Radon transform of (B1) taking y into ¢t and e; yields
v wstel - tate — i vy = =2 (Z + T4 52 ) bt = ). (B9

where the §(|z| — |y|) has been used to convert 1/]y| to 1/|z| and then pull it outside of

the Radon transform with respect to y. Setting t = |z| reduces the left side of (B3) to

|z|?V(z, e;), and quickly yields equation (4-10b).
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Figure Headings

FIG. 1. Lattice filter implementing (2-1) [26].

FIG. 2. Recursion pattern for updating h(z,y) in the three-dimensional Levinson
algorithm of [1].

FIG. 3. Recursion pattern for updating h(z, ¢, ¢;) in the three-dimensional split Levin-
son algorithm.

FIG. 4. Recursion pattern for updating v(z,y) in the three-dimensional split Schur
algorithm.

FIG. 5. Recursion pattern for updating u(z,t,¢;) in the three-dimensional split lattice

algorithm.
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ABSTRACT
New fast algorithms for solving arbitrary Toeplitz-plus-Hankel systems of equations
are presented. The algorithms are analogues of the split Levinson and Schur algorithms,
although the more general Toeplitz-plus-Hankel structure requires that the algorithms be
based on a four-term recurrence; relations with previous split algorithms are noted. The
algorithms require roughly half as many multiplications as previous fast algorithms for
Toeplitz-plus-Hankel systems.
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[. INTRODUCTION

Toeplitz-plus-Hankel systems of equations have many important applications. The
linear prediction problem for nonstationary random processes with Toeplitz-plus-Hankel
covariance functions is one; the recently-developed two-sided autoregressive spectral esti-
mation procedure [1] is another. Toeplitz-plus-Hankel svstems also appear in linear-phase
prediction iilter design [2], the Hildebrand-Prony spectral line estimation procedure [3],
and PADE approximation to the cosine series expansion of an even function {4]. The
continuous-time counterpart (an integral equation with a Toeplitz-plus-Hankel kernel) ap-

pears in atmospheric scattering [5] and rarefied gas dynamics [6].

Fast algorithms for solving Toeplitz-plus-Hankel systems have appeared in [7], in which
the Toeplitz-plus-Hankel system is reformulated as a block-Toeplitz system, and [8], in
which a set of coupled recursions is propagated in increasing predictor order ([9] is a
continuous-time version of [8]). The new algorithms of this paper can be viewed as split
versions of those of [8], analogous to the split Levinson and Schur algorithms of {10] being
split versions of the classical Levinson and Schur algorithms. Alternately, they may be
viewed as analogues of the split algorithms of [10], applied not to symmetric Toeplitz
systems, but to arbitrary Toeplitz-plus-Hankel systems.

The heart of the new algorithms is a four-term recurrence that generalizes the three-
term recurrences of [10] to Toeplitz-plus-Hankel matrices. This recurrence requires two
multiplications per update, which is half the number required by the algorithms of [7]-[9].
This is analogous to the 50% savings in multiplications for the split algorithms of [10] over
the classical Levinson and Schur algorithms. To save space we refer to the new algorithms

as split algorithms, rather than analogues of split algorithms, in the sequel.

In Section II the basic four-term recurrence for the new split Levinson algorithm is
derived. In Section III the computation of generalized potentials using an “inner product”
expression is shown; this and the four-term recurrence constitute the new split Levinson
algorithm. In Section IV a new split Schur algorithm is derived; this avoids the “inner
product” expression required by the split Levinson algorithm. Section V shows how the
new split algorithms are used to solve arbitrary Toeplitz-plus-Hankel systems. Section
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VI discusses how the new algorithms are related to previous split algorithms in special
cases. Section VII concludes by summarizing and noting current research in progress on

multi-dimensional versions of these algorithms.

II. DERIVATION OF THE FOUR-TERM RECURRENCE
A. The Basic Problem

In Sections II-IV we consider the solution of the Toeplitz-plus-Hankel system

[14+ ki - i—i | [ 1 0 ] S—i~i Si-i
f : : hoi~@-1) hi—@i-1) 0 0
k—io - kio = (1)
: : : hoii-1 hii-1 0 0
k—ii e 14kiif b 0 ! Soui S

where the S +: are defined from the {k; ;j} and {k; ;} in (15) below, and the ijth element

of the system matrix has the form
kij =ki(i—j)+ ka(i +J) (2)

for arbitrary functions k1(-) and kz(-). Note in particular that the system matrix need
be neither symmetric nor persymmetric; the only requirement is that all of the central
submatrices be nonsingular.

Updating (1) from ¢ to i + 1 increases the size of the matrix by fwe; this requires
two updates, and requires kj/, ;/, be defined av ualf-integer values (¢/2,5/2). ¥ i/2+ j/2
is not an integer, let k;;z j;; = 0; if i/2 4+ j/2 is an integer, assign k;/; j/2 such that the
matrix with ijth coordinate k;/; /2 is Toeplitz-plus-Hankel. If k;,; is specified by the form
(2), this can be done easily by inserting the half-integer values in the functions &;(-) and
k2(-) (note that the arguments will always be integers); if only the matrix (1) is given, see
Section V.

Omitting the first and last rows of (1) allows 1t to be rewritten as

i—-1 i—1
0=kij+hij+ 3. hinknji O=koijthoij+ O hoinkaj, —(i—=1)<j<i-1.
n=—(i—-1) n=-(i-1)

(3)




Now define the interpolated system of (3) as

i-1/2

0= kiv1/2,541/2 + hiv1/2,54172 + Z hivijznknjt1y2 —(=1)<ji<i-1. (4)
n=~(i-1/2)

and similarly for —i—1/2. The interpolated systems for various orders are auxiliary systems
of Toeplitz-plus-Hankel systems that are solved along with (3) by the algorithms to follow.

This artifice is necessary in order to obtain split algorithms solving nested systems (see

Section VI).
B. Derivation of Four-Term Recurrence for h; ;

To make the derivation easier to follow, we consider only positive i. Define the discrete

wave operator A of a function f; ; as

Afii = firagej+ fim1p2,5 — fijvr2 — fij-172 (5)

A is the discrete version of the continuous operator (g;; - ﬁ;) Note that the Toeplitz-
plus-Hankel structure (2) is equivalent to

Akij=0; forintegeri+j. (6)

Apply the operator A to (3) by writing (3) with i replaced with i £ 1/2, and then j;
replaced with j + 1/2, and then adding and subtracting (4) appropriately. Using (6) and
the definition (5) gives

i-3/2
0= Ah;; + Z AR nkn,j + hig1/2,i-1/2ki-1/2,; + hiv1/2,~(i-1/2)k=(i-1/2),j
n=—~(i—3/2)
i-3/2
- Z (Risnt1/2(kns1/2,541/2 = kn,j) + Rinc1/2(kn1/2,j-1/2 — Kn,j))
n=-(-3/2)
—hii-1kicyjo1y2 = Bi—(i-n)k—(i-1),j+1/2 —(—3/2) <j<i-3/2 (7

The first sum in (7) has the desired form for the argument to follow; the second sum and

the two extra terms following each sum are all corrections to the first sum. Note that (7)
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only holds for —(i —3/2) < j < i —3/2, since in deriving (7) we used (4) with i replaced
with 1 — 1/2.

The second sum in (7) can be simplified using (6). Changing the summation variable
from n to n + 1 in the second term shows that

i-3/2

- Z (Rin+1/2(kns1/2,541/2 = knj) + Bin—1/2(kn=1/2,j-1/2 — kn,;))
n=-—(i~-3/2)

i-3/2

= Z hint1/28kns1s2,j1hii-1(kizy jo12—=ki—172,5)+hi,—i—1)(k—(i=1),j+1/2=K—(i-1/2),5)-
n=-(i-1/2)
(8)

The sum in (8) vanishes by (6). Substituting (8) into (7) and collecting the extra terms

on the left side results in

i-3/2
0=Vikicia;+ VEik—(ieyayi + Bhij+ Y Ahinka; (9)
n=—(i-3/2)

where we have defined the potentials (see [11] for a discussion of this term)
V,-1 = hiy1/2,i-172 — hiji-1; V.'2 = hiy1/2,~(i-1/2) — hi,—(i-1)- (10)

Equation (9) has the same form as (4), with a different left side. To see this, write (4)
with i + 1/2 replaced with i — 1/2 and —(i — 1/2), multiply by V! and V2, respectively,
and add. This gives

i-3/2
Vikiciz,j+Vik—ic1y2),i = Vi hic1j2, i+ ViR iy i+ Z (Vhicijz,m + VE3R_(i=1/2)n) kn,,
n=—(i—-3/2)
(11)
C. Basic Four-Term Recurrence for h;,;
Since k; ; is nonsingular by assumption, the solution V'h;_1/2; + Vh_(i_1/2),; to
(11) must be unique. Comparing (10) and (11), this implies that
Ahij =V} b1+ Vih_(icape,; —(i—3/2)<j<i-3/2 (12)

5




which can be written as

hivij2,; = hijarz +hijoap + (Vi = Dhicipp j+ Viih_(imryeyj —(-3/2) <j<i-3/2

(13)
Equation (13) is the four-term recurrence that is the heart of the new algorithms. It
is analogous to the three-term recurrence on which the split algorithms of [10] are based,
although there are some differences (see Section VI). Although we have treated : as positive

throughout this derivation, (13) also holds for negative i and —(J:| — 3/2) < j < Ji] - 3/2.
ITI. NEW SPLIT LEVINSON ALGORITHM

The four-term recurrence (13) can be propagated in increasing |¢| and —(|i| — 3/2) <
J < |i}—3/2. Note that for ¢ an integer/half-integer, j will take half-integer/integer values,
respectively. However, since (13) does not hold for j = £(i — 1), we must update h; 4(i_1)
using (10), and similarly for h_; 4+(i—1). Also, both (10) and (13) require V;! and V? to
be supplied separately, computed from k; j; note that (10) cannot be used to compute V!
and V2, since (10) is needed to update hy; 4+(;—1). We now show how V! and V? can be

computed from previously computed h; ; and k; ;.
A. Computation of V! and V2
Setting j =1 — 1 in (3) and (4) gives

i-1/2 i-1

hiv1/2i-172 = —kiy1/2,i-1/2— Z Rivijankniz172;  hii-1 = —kii-1— Z Rinkn,i-1.

n=-(1-1/2) n=—(i~1)
(14)

The second equation requires only k;; (known) and h; ; (from the previous recursion);
however, the first requires h;,/2 ;, which has not yet been computed. Substituting (13)
into the first equation and a considerable amount of algebra results in the following. Define

the Schur va1:iablc3
i-1
S.',J- = 5,',,‘ + k,"j + E h,',,.k,.'j, 1=+ (15)
n=—(i-1)

where §; ; = 1 if i = j and is zero otherwise. Note that S; ; can be computed from known
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k;,; and h; ;. Then it may be shown that

=

Si-1/2,i-1/2 S_(i-1/2),i-1/2 ] [V.'l]

Si-1/2,i-1/2 — Sii
’ ’ 16
Sic1/2,-(i-1/2)  S—(i—=1/2),—(i-1/2) | |V [ (16)

Si—1/2,-(i-1/2) — Si,—i

The existence of a unique solution to (16) is proved in Section V below. The closed-form

solution of (16) is

Vi = (S—i=1/2),~(i=1/2)(Si=1/2,i-1/2 — Si,i) — S—(i=1/2),i-1/2(Si=1/2,~(i=1/2) — Si,-i)) / DET

(17a)
V2 = (Sic1/2,i-172(Si=1/2,~(i=172) — Si=i) = Sic1/2,~(i-1/2)(Si=1/2,i=1/2 — Si;i)) /DET
(175)
DET = S;_172,i-1/25-(i=1/2),~(i-1/2) = Si=1/2,~(i-1/2)S~(i-1/2),i-=1/2- (17¢)

B. New Split Levinson Algorithm
Initialization :  hy 9= —k+1,0/(1 + ko,0) (18)

Computation of V!, V2: Compute S; 4; from k; ; (known) and A, ; (from previous
recursion) using (15). Compute V;! and V? from S; 4+ and S;_;,+(i—1) using (17).

Update h; ;j: Compute hy(it1/2),4(i-1/2) using (from (10))
hiv1j2i-1/2 = hiic1 + Vi85 hivaja,—i-1/2) = hi—(ie1) + V7 (19q)

h(iv1/2),i-1/2 = Beivic1 + V2 Roivry2),—(i=172) = Boip—i=1) + V2, (19%)
Compute hit1/2,j, —(1 —3/2) < j < (i — 3/2) using (13). Compute h_(i41),; by writing
(12) as

h_givrjay,j = hoijirye +hoijoryg + (V2 = Dh_isyyzy,+ Vikicygay (20)

At this point the recursion is complete. The computed h; ; for integer/ half-integer
it and j solve the original system (3)/interpolated system (4), respectively; note that two

recursions are needed to increase the size of the system (3) by two (i.e., update ¢ to i + 1).
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The heart of the algorithm is the four-term recurrence (13), which requires 2: — 3 mul-
tiplications to update h; ;. The fast algorithms of [7]-[9] require roughly 47 mul*iplications
to update h; ;. There is a redundancy in the computations of {7]-[9] similar to that in the
classical Levinson and Schur algorithms; the savings of roughly 50% is analogous to the
savings in the split Levinson and Schur algorithms of {10] over the classical algorithms.

This algorithm differs from the split Levinson algorithm of {10] in two other respects.
First, the non-symmetric Toeplitz-plus- Hankel system matrix requires four sequences V};
and V1, of potentials and the four-term recurrence (13). The symmetric Toeplitz system
matrix solved by the split Levinson algorithm of [10] requires only one sequence of poten-
tials and a three-term recurrence. Second, the split Levinson algorithm of [10] propagates
not h; ; but h; j + hi,—j; this is more efficient for symmetric Toeplitz matrices, but requires

recovery of h; ; from h;; + hi —; at termination.
IV. NEW SPLIT SCHUR ALGORITHM

The “inner product” (15) computation requires i multiplications; since it is not paral-
lelizable, it is a computational bottleneck, just as in the classical Levinson algorithm. For
this reason, we now derive a new split Schur-type algorithm for crbitrary Toeplitz-plus-
Hankel matrices. This algorithm can be propagated in parallel with the split Levinson
algorithm derived above; this avoids the computational bottlensck (15). The same idea
was used for the classical Schur and Levinson algorithms in [12].

The first step is to show that the forward prediction error filter satisfies the four-term
recurrence (13). From this, we show that the S, ; defined in (15) (now for all j > i) also
satisfy (13). This implies that (13), initialized using k; ;, can be used to compute V;! and

V2 quickly.
A. Four-Term Recurrence for S; ;
Define ¢i-,j by
$ij = 6ij + hij (21)

Clearly ¢; ; satisfies (13) for —(i — 3/2) < j < 1 — 3/2 since ¢; ; = h;,; for these values.
At j = (1 — 1/2) or (i + 1/2) ¢, ; satisfies (13), since this reduces to (10). And for
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71 2 1+ 3/2 (13) reduces to 0 = 0. Hence (13) with k&, ; replaced with ¢; ; is true for all:
an integer/half-integer and j a half-integer/integer:

Giv1/2, = bijr1/2 + bij-12 + (Vi = Dicyyoj + Viib_(i=1/2),j (22)

Next, extend the definition S, ; in (15) to all integers end half-integers : and j such

that 1 + ;7 is an integer:

i—1 i—-1/2
Sij=8ijtkigt Y hinkagi Sivijzgerje =Siithiayzinet Y. hiyzekagee
n=—(i—1) n==(i=1/2)

(23)
From (3) and (4) S;,; = 0 for --(¢ — 1) < j <7 — 1. Substituting (2) and (21) in (23) gives

Sij =Y (8in+hin)(bnj+knj)= Z $in(bn,j + k1(j — n) + k2(j +n))

= ¢i,j + ¢i,j * k1(j) + di,—j * k2(5) - (24)

where * denotes a convolution in j.

Since (22) is linear in functions of j, it may be convolved with k;(j). Note that (22)
still holds if j is replaced with —j, and convolve this with k2(j). Adding (22) to the
convolution of (22) with k;(j) and the convolution of the time-reversal of (22) with k2(7)
and using (24) shows that

Siv172,5 = Sijr12 + Sijora + (Vi = 1)Sizyj2,; + V2S_(i=172), (25)

so that §; ; also satisfies the four-term recurrence (13). Equation (25) can also be derived
by taking the z-transform in j of (22), noting that the result is unaffected if z is replaced
with 1/z, multiplying by the z-transforms of k;(j) and k;(j), and adding.

B. New Split Schur Algorithm

Imitialization : So,; = ko j;  Sit1/2,j41/2 = Kx1/2,541/2 (26)

Note ko,m and k;/3 n41/2 for integer m and half-integer n + 1/2 uniquely determines k; ;

for all+,;, ¢ + 5 an integer, using (6).




Computation of V!, V: Compute V! and V? from S; s+ and S;_;/2,4(i—1/2) using
(17). Similar equations are used to compute V2, and V2.

Update S, j,|j] = & using (25).

At this point the recursion is complete. The split Schur algorithm can be run in
parallel with the split Levinson algorithm, supplying the potentials V}; and VZ; while
bypassing the “inner product” computation (15) ((17) is still necessary), as suggested in
[12] for the classical algorithms.

If the original system (3) is a discretization of an integral equation, then S;; << 1
and the §; ; in (15) dominates the other terms if i = j. In this case the solution to (16) is
simply

V! =Siciic1 = Sii; Vi = Sicn,—(im1) — Si,=i (27)

which replaces the more complicated (17).
V. SOLUTION OF ARBITRARY TOEPLITZ-PLUS-HANKEL SYSTEMS

The split algorithms above solve the systems (3) and (4); hence they also solve (1)
with S4i 4 defined as in (15). We now consider the general problem
1+koi—i - ki-i T b—;
N =1 (28)
k...'_,' oo 14 k,‘ﬂ‘ T bi
where the right side is now arbitrary.
Define {c;, —i < j < i} recursively as follows. Let c4; be the solution to the 2 x 2

system

j~1
[S-,—,ﬂ- 5:'.-;] [c-,-] _ [b—j = Lne—i-n) enSn-i | (29)

.. .. . 71~1
S-jij S.j €j bj — n=-(,’—x)cn5n,j

Then the solution to (28) is given by

Ti= Y Cnbnjy —i<j<i (30)
where ¢;,; is defined in (21) and hk; ; is defined to be zero for |i| < |j|. These equations

may be derived easily by taking linear combinations (weighted by the ci.~ of the columns

10




of (1) for increasing i and equating to (28). Note how this relies on the split algorithms
solving nested systems of equations as ¢ increases.

We note here that the 2 x 2 systems (16) and (29) have unique solutions if the central
submatrices of the system matrix (1) are nonsingular. To see this, suppose that the 2 x 2
system matrix in (16) an.! (29) is singular. Then the second column is a multiple (say
m) of the first column, and the column vector (1, -, (h—;; — mh; ), -+, —m]7 solves the
homogeneous system associated with (1), which is impossible as long as the system matrix
in (1) is nonsingular.

If the system matrix is specified by functions k;(-) and k2(-) as in (2) (and [7]), then
the initialization (26) for the split Schur algorithm is accomplished using (2) directly (note
the arguments are always integers). However, if the matrix (1) is given directly, then
k+1/2,j+1/2 must be interpolated from the given values ko ; and k4, ;. From (6), these can

be recursively computed as needed in the split Schur algorithm using

ki1/2,54172 = ko,j + kx1,; — kx1/2,5-172;  kx1p2,172 = kx1/2,—172 = (1 + ko0 + kx1,0)/2
(31)
V1. RELATION WITH PREVIOUS SPLIT ALGORITHMS

A. Relation to the Split Algorithms of [10]

To show how the new algorithms reduce to the split algorithms of [10], we first consider
the class of Toeplitz-plus-Hankel matrices such that k;; = k_; —j. In terms of (2) both
ki(-) and ky(-) are even functions; note that covariance functions of time-reversible random
processes have this property. The set of centrosymmetric matrices (matrices that are both
persymmetric k; ; = k_; _; and symmetric k; ; = k; ;) is a subset of this class. From (3)
hij = h_; _j, from (15) S; j = S—; -}, and from (17) V! = V2, and V? = V},. Hence the
computations for ¢+ < 0 can all be dispensed with.

We can go further. Defining
aij=hij+hi-j; eij=S8ij+Si-;; Vi=V!4+V} (32)
replacing j with —j in (12) and (25), and adding to (12) and (25) respectively results in
Aai; =Viaio1j; De;j=Vieiny,;. (33)

11
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[ ]
Adding (16a) and (16b) allows V; to be computed from e; ; by
Vi = (ei—1,i~1 — €i,i)/€i=1,i-1- (34) o
From (3) and (32) a; ; is the solution to
i-1
k‘.rj + k‘.v-j = ai’j + Z ailnkntj' (35) .
n=-(i—-1)
The solution to (35) can be recursively computed using the three-term recurrences (33),
along with (34). These ecuations have virtually the same form as the split algorithms of P
[10], even though k; ; is not Toeplitz.
To see what is happening here, use (2) to rewrite the left side of (35) as
kij+ki—j=ki(i—j)+k(i+5)+k@E+i)+k(-7)=kG~-j)+k(E+;) (36) e
where k(i) = k1(i) + k2(¢). From (32) ai; = ai—j, and the right side of (35) can be
rewritten using this and (36), yielding
°
i-1
k(i = 5) + k(i + ) = ai; + ) _ ain(k(n — )+ k(n + 7). (37)
n=0
Equation (37) is in fact the symmetric Toeplitz system solved by the split algorithms of [10], °
after shifting from a one-sided to a two-sided interval. This shows how these algorithms
are related to the algorithms of this paper. Note that the split algorithms of [10] propagate
a; j, not h; j; h;; must be computed from a; ; at the end.
If the system matrix (1) is merely symmetric, a more subtle simplification is possible. o
In this case, the block-Toeplitz reformulation of [7] becomes a centrosymmetric block-
Toeplitz problem, and the results of Section VI of [13] can be used to derive a three-term
matriz recurrence similar in form to (13) and (20) combined, except that V2, = V2. ®
However, tnis recurrence does not propagate the hy;, ; directly, but weighted combinations
of them, and it requires as many multiplications as the algorithm of this paper (which
also works for nonsymmetric matrices). It is more efficient in that it requires only three °
functions, instead of four, to characterize the inverse of the system matrix (1); this is
12
| ]

ﬁ“




L

reasonable since symmetry requires k;(-) in (2) to be an even function, removing a degree

of freedom.
B. An Alternative Algorithm for Non-Nested Matrices

If the problem (1) is modified so that the system matrices of different orders are no

longer nested, the algorithm takes a slightly different form. Consider the system

1 0 Sn Tn
k1, o kny2, 0 0
" z7 Yn 0 0
o= : (38)
: zn Y7 0 0
kin+2 o0 Knt2,n42 0 1 Sos1 Thny
where k;,; is now defined by
kij=ki(i—j)+k(i+j—(n+3)) (39)
and S and T are defined as (compare to (15))
n n
SP =Y atkisrins TP =D yfknta—jivi To =95 =1 (40)

i=0 j=0

Defining the polynomials

Xa(z) = D277 Ya(2) =) i R(2) =3 k()5 H() =3 k()7 (41)

j=0

the system (38) can be written in polynomial form as
R(1/2)Xn(2) + 2" H(2)Xa(1/2) = ... + S5 + S0 2"+ ... (42a)

R(1/2)z"Yo(1/2) + H(2)Yu(z) = ... + T + Tpp 2™t + ... (42b)

where the ellipses indicate terms of lower and higher order in Laurent series.
Knowing the form of the four-term recurrence, writing (42) for n, n + 1, and n — 1,

and adding and subtracting appropriately gives

R(1/2) (Xn+1(2) = (2 + 1)Xa(2) = 2V Xno1(2) — 2V22"Ya_1(1/2))

13




+H(z) (z"** Xn11(1/2) = 2"*2(1/2 + 1)Xa(1/2) = 2" (1/2)V, Xn1(1/2))
=...+Sgtt 4 Sphnti g (43)

provided that V! and V;? are chosen such that (compare to (16))
][]
As long as the system matrix (38) is invertible, the expression in parentheses in (43) must
be zero. Equations (43) and (44) define a four-term recurrence for the solutions to (38).
Proceeding as before, analogues of split Levinson and Schur algorithms may be derived.

This algorithm avoids the interpolated system and half-integer recursions of the pre-
vious algorithms. However, it does not save any computation. More importantly, (38) and
(39) do not define a nested set of system matrices in increasing order n: the ijth element
of the system matrix changes with order n (see (39)). Hence this algorithm is not useful
for updating problems, in which the size of a Toeplitz-plus-Hankel system is enlarged by
augmenting the system matrix around its edges; this type of problem is common in linear
prediction. The solution of an arbitrary Toeplitz-plus-Hankel system also becomes more
complex than (29)-(30).

A nested system of equations in increasing n can be defined from (38) and (39) by
making the substitution ' =i —(n+3)/2, ;' =j—(n+ 3)/2. This alters (38) and (39)
to (1) and (2), respectively; however, for n even it requires that the interpolated system
(4) be defined. This leads back to the previous algorithm.

Although the derivation (43) is simpler than that of Section II, it requires prior knowl-
edge of the form of the recurrence. The derivation of Section II derives the form of the
recurrence directly, and shows that the Toeplitz-plus-Hankel form, rather than the purely
Toeplitz form, is fundamental to the split-like recurrences. It also shows that matrices
with structure defined implicitly (as in (6)), rather than explicitly (as in (39)), can have

fast algorithms easily derived for them. In particular, this has led to fast algorithms for
block Toeplitz-plus-Hankel systems of equations [14].

VII. CONCLUSION
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New fast algorithms have been derived for solving arbitrary Toeplitz-plus-Hankel sys-
tems of equations. The new algorithms can be viewed as analogues of the split Levinson
and Schur algorithms of [10], but applicable to a more general problem. The split Levinson
algorithm recursively computes the solution using a four-term recurrence, but requires a
non-parallelizable computation (15) to compute the potentials. The split Schur algorithm
computes the potentials using a similar four-term recurrence; using it in parallel with the
split Levinson algorithm obviates (15) and allows the same processor architecture to be
used for both algorithms.

The algorithms presented in this paper have two-dimensional analogues applicable
to the linear prediction problem for a two-dimensional random field [14],(15]. Unresolved
issues include the numerical stability of these algorithms, optimal processor architectures

for implementation, and generalization to matrices with singular submatrices.
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Abstract

New generalized split Levinson and Schur algorithms for the two-dimensional linear least-squares
prediction problem on a polar raster are derived. The algorithms compute the prediction filter for
estimating a random field at the edge of a disk, from noisy observations inside the disk. The covariance
function of the random field is assumed to have a Toeplitz-plus-Hankel structure for both its radial
part and its transverse (angular) part. This assumption is valid for some types of random fields, such
as isotropic random fields. The algorithms generalize the split Levinson and Schur algorithms in two
ways: (1) to two dimensions; and (2) to Toeplitz-plus-Hankel covariances.




I INTRODUCTION

The problem of computing linear least-squares estimates of two-dimensional random fields from noisy
observations has many applications in image processing. In particular, the two-dimensional discrete
linear prediction problem is a useful formulation of problems in image smoothing and coding [1). If the
random field: (1) is defined on a rectangular lattice of points; (2) is stationary; and (3) has quarter-plane
or asymmetric half-plane casuality, then the two-dimensional linear prediction problem may be solved
using the multichannel Levinson algorithm [2, 3] (modifications of these conditions are also possible).
By exploiting the Toeplitz-block-Toeplitz structure of the covariance function of the stationary random
field, this algorithm allows the linear prediction filters to be computed recursively using significantly
fewer computations than direct solution of the two-dimensional discrete Wiener-Hopf equations. The
multichannel Schur algorithm computes the reflection coefficient matrices from the covariance function;
propagating it in parallel with the Levinson algorithm saves even more computation.

In tomographic imaging problems solved by filtered back-projection [4], and in spotlight synthetic
aperture radar (5], data are collected on a polar raster of points, rather than on a rectangular lattice.
Although such data can be interpolated onto a rectangular lattice, this is necessarily inexact; it also affects
the covariance function. For example, the covariance of an isotropic random field on a rectangular lattice
is a Toeplitz function of the ordinates and abcissae, while on a polar raster it is a Toeplitz-plus-Hankel
function of the radii. For smoothing noisy images and performing image coding for images defined on a
polar raster, it is clearly desirable to develop analogues of the multichannel Levinson and Schur algorithms
applicable to discrete random fields defined on a polar raster.

This paper develops these analogues. They generalize previous results in three ways: (1) the random
field is defined on a polar raster; (2) the random field is not required to be stationary; rather, its covariance
must have Toeplitz-plus-Hankel structure in both the radial and transverse directions (some important
cases of such random fields are noted in Section IV); and (3) the quarter-plane or asymmetric half plane

~causality assumption is replaced by a more natural causality defined in the radial direction only. The




prediction filters estimate the random field at a given point using observations from all points of smaller
radius.

Three other features are worth noting here. First, the algorithms are generalized three-term recur-
rences, similar in structure to the split algorithms [6, 7). The one-dimensional split algorithm recursions
require only half as many multiplications as the two-component lattice recursions of the Levinson and
Schur algorithms. Our two-dimensional algorithms are similarly computationally efficient, which is im-
portant in two-dimensional signal processing. Second, the smoothing filters for estimating the random
field from observations at points of smaller and greater radii can be easily computed [8] from the prediction
filters using a discrete multi-dimensional generalization of the application of the Bellman-Siegert-Krein
identity to the one-dimensional smoothing problem in [9]. Indeed, the new two-dimensional algorithms
of this paper are applied to arbitrary Toeplitz-plus-Hankel-block-Toeplitz-plus-Hankel systems in Section
V.

Finally, we note that similar ideas have been applied to continuous-parameter isotropic [10] and
homogeneous [11] random fields, and to random fields with more general Toeplitz-plus-Hankel structure in
(12] and [13]; this paper can be viewed as a discrete version of the results of [13]. Although the continuous
algorithm can always be discretized, an inherently discrete algorithm can be expected to perform better
on a computer; there are minor yet significant differences between the results of this paper and the
continuous results of [13] (see Section IV). Also, in some problems the data are sampled, or only taken at
discrete points. These facts motivate us to develop a discrete counterpart of the continuous algorithms.
We also note that the one-dimensional version of this algorithm has been presented in {14], and that a
summary of the results of this paper was presented in [15].

This paper is organized as follows. In Section II, the two-dimensional analogue of the discrete split
Levinson recurrence for the linear prediction problem on a polar raster is derived. The derivation is based
on the assumption that both the radial part 2nd the transverse part of the covariance have Toeplitz-plus-

Hankel structure. Section III derives a corresponding Schur algorithm, to be propagated in parallel with




the Levinson algorithm. Some examples of random fields with covariances having Toeplitz-plus-Hankel
structure are discussed in Section IV, and comparison with the results of [13] are made. In Section V, the
computational complexity of the proposed algorithm is evaluated, and compared with other algorithms.
The solution to a general Toeplitz-plus-Hankel block Toeplitz-plus-Hankel system of equations is also

developed. Section VI concludes with a summary.

II DERIVATION OF THE LEVINSON-LIKE RECURRENCE
A. Basic Problem

The problem considered is as follows. Given noisy observations {y; v} of a zero-mean real-valued
discrete random field {z; »} at the points (7, N) of a polar raster on a disk, compute the linear least-
squares predictions of z, y for all points on the edge of the disk using all the data inside the disk. Here
i is an integer radius from the origin, and N is the integer index of the argument (angle); if there are M
points distributed on the circle of any radius, then (i, V) is the point at radius ¢ and angle 27 N/M.

The observations {y; v} are related to the field {z; N} by yvin = zi N + v N, Where {v; N} is a zero-
mean discrete white noise field with unit power, and {z; ¥} and {v; v} are uncorrelated (white noise with

2

arbitrary power ¢ can be easily handled by scaling). The covariance of {z; n} is

K(i,Ny;j,N3) 2 Elz; n,z;,N,) (1)

which is assumed to be a non-negative definite function with Toeplitz-plus-Hankel structure in both
arguments (this is defined precisely in (13) and (14) below). Although an actual covariance would also
be symmetric function, symmetry in (1) is not required by the algorithms to follow; this permits their
application to general Toeplitz-plus-Hankel block Toeplitz-plus-Hankel systems in Sec‘ion V.
The estimates of r; v at the edge of the disk are computed from the observations {y; n} using
-1 M
Bino= D 2 h(i Niid, Nawiw, (2)
7=0N3=1

By the orthogonality principle of linear prediction, the optimal prediction filters h(i, Ny;j, N;) are




computed from the covariance K (i, Ny; j, N2) by solving the two-dimensional discrete Wiener-Hopf equa-

tion
-1 M
K(i, N1:j, N2) = h(i, Ni:j, N2) + ) D h(i, Nysn, N3)K(n, N3; j, Na) (3)
n=0 N3=1

forall0<j<i-land 1l < N,N, < M.
The goal of this paper is to derive fast algorithms for solving (3) for (i, N1; 7, N2) when K (i, Ny: 7, N2)
has Toeplitz-plus-Hankel block Toeplitz-plus-Hankel structure.

For convenience in the derivation, we solve not (3) but the system of equations
-1 M
K(i.Ni;j, N2) = h(i, N33, N2)+ ) D h(i, Mi;n, N3)K(n, N3; j, N2) (4)
n=—(i-1) Na=1

forall -(i-1)<j<i-1and 1< Ny, Ny <M. This modified system (4) is motivated by noting that

the continuous-parameter two-dimens; > 1al Wiener-Hopf integral equation

K(z,y) = h{z,v)+ /| MKy de

lz} 27
= hiz.y)+ /0 /0 h(z.|2|0)K(|218,y)lz| d8d|z|, z,y,z € R?,|y] < |z] (5)
discretizes into
-1 M
K'(i, N5, Ng) = W(i, N i, Vo) + S S R, Nasm, N3)K'(n, Nas j, Ny)m (6)
n=0N;=1

where the radial weighting factor n in (6) reflects |z in (5). If we let

. . . . . 1 . . -
MEN VD) = Y G NN = YR G Ny =5, N+ M )2) 7
KGN N = P NN = YK N5,V + MJ2) ()

then the sum in (4) is simply double the sum in (6), so that if h(s, N1;7, N2) and K(i, N1;j, N2) satisfy
(4), then A'(i, Ny j, N2) and K'(i, Ny, j, N7) satisfy (6). Note that the second equalities in (7) and (8) will
hold on a polar raster, but are not required in (4). For convenience we continue to refer to K (¢, Ny; j, N7)
in (4) as the covariance function.

Similarly to the approach used in [14], we decompose the update procedure into two steps by intro-

ducing an interpolated (auxiliary) system. As shown in Fig. 1, between every pair of points in the same




radial direction, we insert an auxiliary point. The covariance function K(i, N1;j, N2) is interpolated at
these auxiliary points such that the Toeplitz-plus-Hankel structure (see (13),(14)) is maintained. Then

the interpolated system is defined as
1 1 i—1 M 1
KGN + 5.V =L Nuj+ 5,30+ 3 3 k(i Nyin, Na)A (n, Nagj+ 5,N;) - (9)
n=~(i—1) Na=1
for interpolation at half-integer values of j and

i—4
T S : M 1
K(i+3,Miij(+5), N2) = h(z+ VN1 J(+ LN+ Y Eh(z+ s Niim, Na)K (n, Na; j(+35), N2)
‘ n—_(,_l)Ns—l
(10)

for interpolation at half-integer values of . Note that in (10) j can also take ~n half-integer values.
B. Deriwvation of the Basic Levinson-Like Recurrence

Define the discrete wave operators A, and Ay by

S N1 Vo) 2 G4 50 M M)+ S 5 Ny Na) = G5, Wi 3, Na) = 16, Vs = 5, N2) (1)
Nof (i Ny N2 2 fid = 3 N+ 14, M)+ S = 5, M= 15, 9)

- [ = 5, Mg N+ 1) = G- 3, e Na = 1) (12)

where A, and Ay can be regarded as discrete versions of the continuous operators (ai:’;" - 5%) and

(:92 d%) for the radial part and transverse part, respectively. In (12) Ny +1 and N, £ 1 are computed

mod A , reflecting their definition as angular variables on a polar raster.
We assume that the covariance function has Toepiitz-plus-Hankel block Toeplitz-plus-Hankel struc-

ture, defined by

A K (i, Ny 5, Ny)

i
o
—_
p—
(%)
~—

AgK (i, Ni; , Ny)

I
o
—_—
—
<Y
~—

Applying the Laplacian operator A = A, + Ay to the equation (4), we have afier some algebra

)
3 2 M
AK(i.Ny:3.N2) = 0= AR(L NN+ Y. S AR, Nisn, Ny)K (n, N3 5, N,)
nz_(,'_%)h';;:l




M

. . .1 .
+ 3 h(z+1 Niii = 2. Na) = h(i, Nysi = 1, N3) K (i — =, N3 7, V)
1\3 1 2 2
M 1 1
+ Y [h( Nys=(i = 5),N3) = h(i, Ny (i = 1), Ny)| K (- z——) N3;3, N2)
Ni=1

i-1

+ Z Z h(i, Ny;n, N3)A. K(n, N3;7, Ns)

n=—(i—-1) N3=1

-3

1 .
+ Zl NZ h 1—-2' ,Nun, N3)A9K( N3;]7N2) (15)
n_—(t- ) V3 1

The algebra required to derive (15) is a generalization of the algebra in [14]; the major difference is that
there are nc "end effect™ terms in the sums over N3 when Ay applied. This is true since h(z, Ny;j, N;) is
periodic with period M in ¥, and N, since these indices represent angles on the polar raster.

Using (13) and (14) to note that the last two terms in (15) are zero. we note that (15) has the same

form as the following linear combination:

M

: N S N AR 1
D V(N Ng)K (i = 5. Naijo N) 4+ VT (VL N3 R (= (6= £). N3t NS
Na=1 = <
M 1 1
= Z [V (N N3)h(i - Eu\':sljuv2}+‘;_(1\'1-1\'3)’1(—(1—_—) N3 )Ny
Na=1 <

4
-

2 M M
.. . A A G .
+ Z Z Z (N (1—:,4\3;n“\4)+“ (‘\1,]\3)h(—(z—3).,\3;11,‘\4)]

~(i- -

~|..a

x K{n. N j. V) (16)

where we have defined the potentials

» 1 1
l;+(.\'|,.\‘2) [}l(l -; .\'121—B,A’Vv'z)—h(l‘,xv]:i— l.AV2)] (17)
1. S o ,
1 1\1 \2):—[}1(1 X —).4\1;—(1—5)..\2)—}1(1,4\1;—(1—1)..‘\‘2)] (18)
Note that on a polar raster we have V.*{.V,. N,) = 1 7(Ny, N2 + M/2). Since the covariance furction

K{i.Ny:j..V,) is assumed to be non-negative definite. equation (+) must have a unique solution. The

soiutions to (15) and (16) must be identical. so that

A
N A Lo 1 |
Ahte. Ny N = 2 é\‘fﬂ\l‘.\v;i}ﬂl‘:..\-52]“\ )+" (N \3)}1( (l*}) Na g, \2)] (19)
A= -

6




Equation (19) is the basic recurrence that is the heart of the Levinson-like algorithm. The left
side is the difference of two two-dimensional discrete Laplacian operators, analogous to the difference
of one-dimensional discrete Laplacian operators appearing in the split algorithms of [6]. The right side
generalizes the three-term recurrence in [6] to a multi-term recurrence; this is analogous to the matrix
recurrence in {7]. Hovever, it is applicable to non-symmetric block Toeplitz-plus-Hankel systems, unlike

that of [7]. Writing out (19) explicitly, we have

D S ) o1 . o1 o1 o
h(z+§,.f\’1:],;’\v’2)=h(z,Nl;]+§,N2)+h(z,N1;]—E,Nz)——h(z——g-,Nl;],;g)

o1 o D S | . .1, .
+h(1,—3,.’\/1;],‘\2-4-1)+h(z—-2-,]\11;].1\2—1)—h(z—-—-;),N1+1;_],N2)—h(1—§.1\1—1;],]\2)

A\
: i o1 _ o1 )
+ Z [",+(1V17N3)h(l-57‘N3:J’N2)+‘/,‘ (N19N3)h’(_(.z_;)3N3;.71N2)] (20)
Ny=1 -

for all —{i - %) <j<(i- %—) and 1 < N, N, < M. Although we have implicitly treated i as positive
throughout the derivations, the recursive equations hold for negative 7 as well. When ¢ is an integer and
J is a half-integer. equation (20) will update h from the real points to the interpolated points. When 1
is a half-integer and j is an integer, equation (20) will update h from the interpolated points to the real

points.
III DERIVATION OF THE SCHUR-LIKE ALGORITHM

A. Derivation of the Schur-Like Recurrence

We still need to calculate the potentials V,*(N,, N;) and V,7(N1, N2) at the beginning of every update
so that we can use the recursive formula (20). To do this, we introduce the Schur variables (defined at
integer and half-integer points)

i-1 M
SN D) 2 8w, + KNG G, N2) = (i, Nyg§, Ng) — Y ST h(i,Nisn N3)K(n, N3ij. Vo)
n=—(i-1) N3=1

(21)

where ¢, &, v, = 0 unless ¢ = 7 and Ny = N, in which case it is unity.




Since the Schur variables are linear combinations of the prediction errorfilters é; n,.; n, —h(z, N1; 7, N2),

equation (17)-(20) show that s(i, Ny;j, N2) satisfies the recurrence (20), but now for all j:

A 3 o1 . .1 R S
S(l+§w\’1;1~’V2)=3(1,N1§J+§»N2)+6(1,N1§J"'5,1\’2)“6(1*5,1\'1:],1\[2)

1 | . | ; | ;
+s(i— 5, Nyj N+ 1) + s(t — ElezLNz -1)—s(i— 2 Ny+1;3,Ny) = s(i §»N1 -1;5,N2)
M 1 1
+ Z (V.Y (Ny, N3)s(i ~ 5»1\"3;], N2) + V7 (N1, N3)s(~(i - 5),N3;j, N3)] (22)
N3=1

Equation (22) is the basic recurrence for the Schur-like algorithm. Note that for —(i — 1) < j <

(t—1)s(i. Ny 7. N2) = 0 by (4).
B. Computation of Potentials

Setting j = (1 — —;) and —(7 — -%) in (22), we have

M
. . as 1 | _ | R G
> V(N Na)s(i - 5 Nait~ 5. N2) + ViT(N1, Na)s(=(i = 5), Naji = 5, N2))]
.'\'3-—1 P4
| .1, . . , A |
= s(1~ fé‘w]vl: i - 5,1\2) —s(2, N3, N2) + Dps(i, Nyji — EyNz) (23)
Mo 1 L 1 1
[VT(V). Va)s(i - > N3 ~(1 = =) N2) + V7 (N1, N3)s(=(i ~ 5),N3§ ~(i - 5),N2)]
N.=1 <
o1 | . ; ) o1
= s{i— > Ny —(i - 5),1\72) - s(4, N, =1, No) + Ags(i. Ny; — (i — 3),N2) (29)

Equations (23) and (24) can be written in matrix notation as

VSt 4 V-8t = Xt (25)
V+§+- 4+ V-8~ =X~ (26)
where we have defined the M x M matrices

[V+]N1,N2 = V,-+()V1,N2), [v-]Nth = Vi_(NhN?) (27)

o1 o1
(S¥t N, Ny = s(x(i - 5), Ny (i = 5), N2) (28)




o1 .1 . . . A G
[Xi]Nl.Nz = S(l - Ele;:t(z - 5)'N2) - 8(11N1;2aN2) + Aos(l,Nl;i(l - 5)1 1\2) (29)

If the system matrix defined in (4) (written explictly in (44) below) is strongly non-.ingular, i.e. the

leading principal submatrices are all non-singular, then (25) and (26) cun be solved in closed form as

Vt = (Xt -X"(§ )" 1§ +)§+t - §+-(§—)"1§-*)1 (30)

V- (X~ - x+(§++)—1§+— )(g—— - §—+(§++)—1§+-)-1 (31)

The strongly non-singular assumption is necessary and sufficient for (25) and (26) to have a unique
solution; the prooi of this is a direct generalization of the one in [14]. A similar assumption is required
by the standara multichannel Levinson and Schur algorithms.

The split Schur-like algorithm consists of computing (i, Ny;j, N2) by propagating (22), initialized

using K (i, Ny ~ N;), while computing the V;t(Nl, N,) from the s(i, Ny; j, N2) using (28)-(31).
C. Summary of Qverall Procedure

The overall procedure can be summarized as follows. Let I,z be the largest radius (maximum radial
prediction order). Then:

1. Initialization of Split Schur-Like Algorithm
Hi%'o = Ki%,o(l + Koo)', Hiro = Kio(I+ Koo)™!
where (K11 0lm.8, = K(£3.51:0,N2), [Koo|n,,N, = K(0,N1;0,N,),
[Kil.O]Nl,Nz = K(illeyOa NZ)
L 1 , M 1 .
S(I§, N1 j N2) = bxi nyjn, T A (i'Q',Nl;J,Nz) - Nzx h(igle;0,N3)K(0,N3;J,N2)
3:

for all j = i%,...,i?lma, and M{,N, =1,... . M

M

S(£1. N1 3, N2) = bxrmy g + K (21, N j, Na)=h(£1, Ny 5, N2)= 3 h(1, N3;0, N3)K (0, N3; 3, V)

Ni=1

for all j = +1,...,22[ e and Ny, N2 =1,... . M




2. Propagation of Split Schur-Like Algorithm
A. Computation of the potentials V,*(N;, N2) and V,;7(Ny, Ny):

Compute V¥ (N1, N2) and V;”(Ny, N2) from the available s(£(i—1), Ni; £(i—1), N2) and s(+2, Ny; +i, N3)

using equations (30) and (31);

B.Update the Schur variables

For j=+(i1+ %) To j=+42lne:, Mi=1 To M, N;=1 To M, Parallel Do
Update the Schur variables using (22).

End Parallel Do {j Ny, Na}.

3. Propagation of Split Levinson-Like Recurrence
A. Propagate the Boundary Points

For N\y=1 To M. N,=1 To M, Parallel Do

1 1 . X
h(i+§,N1;i—-2—,N2) = h(i,Ni;i = 1,Np) — VYN, N,) (32)
1 | ) . -
h(1+§»N1;—(1-72')»N2) = h(i, Ny;—=(i = 1), N2) = V.7 (N1, No) (33)

End Parallel Do {N;,N;}.
B. Propagate Non-Boundary Points
For j=-(i-1) To j=(i-1), M =1To M, N;=1 To M, Parallel Do

Update h(i, Ny, j, N,) using equation (20).

End Parallel Do {;. N, N,}.
4. Repeat steps 2 and 3 from ¢ = 1 to [, with increment -;

Note that the Levinson and Schur recurrences (20) and (22) have identical forms, with complementary
supports. Hence they can be propagated in parallel using identical processors; this possibility was first

noted for the one-dimensioral case in [16).
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IV RANDOM FIELDS WITH BLOCK
TOEPLITZ-PLUS-HANKEL COVARIANCES

In the above derivation, we have assumed that the covariance function is already known. If only a sequence
of two-dimensional time series data are available, there are two methods for obtaining a covariance
function having the desired Toeplitz-plus-Hankel structure (13),(14). The first method is to compute a
data covariance matrix, and then determine a symmetric Toeplitz-plus-Hankel block Toepiitz-plus-Hankel
matrix close (in some sense) to this matrix. This is a two-dimensional Toeplitz-plus-Hankel generalization
of the well known "Toeplitzation” problem [17]. Some procedures for this problem are suggested in [18).
The second method is to assume that the data are generated by some underlying model, for which
unknown parameters may need to be determined.

In this section we focus on the second approach, giving some specific examples of random fields whose
covariances satisfy assumptions (13) and (14). These are merely illustrative; there are of course many
others. We also note how the algorithms of Section II relaie to the continuous-parameter algorithms of

[13].
A. Isotropic Random Fields

For an isotropic random field, the covariance is a function of distance only, i.e., if r and y are two
arbitrary points in the plane, then K(z,y) = h'(|z — y|). Consider the special case of a isotropic random
field with covariance A'(z,y) = p"‘”'z, which is often used in image modeling {19]. In polar coordinates
on a discrete polar raster, this covariance function can be represented as

K (i, Ny j, Ny) = p© 77 -2scostan(Ny =Na)/M)
= pé((i+j"+‘.i-1)2]-[(-'+1')’—(i-j)’]coa(2r(N:—Nz)/M)

~ 1+ -12-([(1' + 374 = 3% = [(i 4 5)° = (i = 5)*Jeos(2x(Ny — N2)/N)Inp (34)

ifp=1

11




Note that the exponent has the Toeplitz-plus-Hankel structure required by (13) and (14), and that it
is not merely Toeplitz in ¢ and j; hence the multichannel Levinson algorithm is not applicable. If p = 1,
the entire covariance satisfies (13) and (14). Indeed, any slowly-changing function of distance on a polar

raster satisfies (13) and (14) in its radial and angular arguments.
B. Separable Covariance Functions

A separable covariance function is one that can be decomposed into multiplication of a function of
the radial part and a function of the transverse part, i.e., the covariance function K'(7, Ny;7, N2) can be
expressed as

K(%,Ny;j, N2) = R(4,j) x T(Ny, N3) (35)

for some functions R and 7. This type of covariance function satisfies (13) and (14) as long as both R
and T have Toeplitz-plus-Hankel structure. Examples include:
1. 2-D Discrete Wiener Process
The 2-D discrete Wiener process on a polar raster can be defined as
t M
Tiny = 9 9 Win , ToN, =0 (36)
7=0n=1

where w; , is a zero-mean discrete white noise field with variance o2. Its covariance function is equal to

K(i,N;j,N2) = Elzinzin] = Mo*min(i, 5)

Ma’%[li +3l = 1i = 4l] (37)

Note that R(%,j) has Toeplitz-plus-Hankel structure and T(N;, N;) is a constant function.
2. 2-D Circularly Symmetric Markovian Random Field
In a first-order 2-D circularly symmetric Markovian random field, the output is a uniformly linear

combination of the previous "shell” of data pius white noise, i.e.

M
TN, = @) Ticin + WiN, (38)

nxl
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If o, is assumed to be zero for all n, and the variance of w; n, is equal to o2, then the covariance function
is
K(i,Ny; j,N2) E[ziN,;25,N,]

Ma?
1-a?

i

[a|‘—j| _ al‘+J’|] (39)

Again, R(1,7) has Toeplitz-plus-Hankel structure and T(N,, N3) is a constant function. In the limit

a — 0 (39) reduces to (37).
C. Relations with Continuous Algorithms

It is instructive to examine the continuous-parametar limits of some of the equations of this paper. Let
the intervals between points be 4, in the radial direction and é5 = %} radians in the transverse (angular)
direction. Introducing a radial weighting factor, as discussed earlier, and taking limits as §, and 8, go to
zero result in the following transformations:

1. The discretized Wiener-Hopf equation (6) becomes the Wiener-Hopf integral equation (5);

2. bin,;;.,N, becomes a continuous two-dimensional impulse function, dominating the sther terms in
the definition (21) of the Schur variables, so that (30) and (31) may be replaced with V* =~ Xt

and g ~ x . USing this, equa.tion (29) becomes
1y V1, V2 a a 1Y U2

where z and y are continuous radii and 6, and 8 are continuous angles. Equation (40) has the

form of (4-17b) of [13]. Similarly, the continuous version of (13) has the form of (4-2) of [13];

3. Equation (13), with its difference of discrete two-dimensional Laplacian operators on the left side,
is clearly analogous to (A, = Laplacian with respect to z)

ris
(AI - Av)h(zvgl;y102) = A V(zaol;03)h(z703;y102) d03 (41)
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which is the two-dimensional form of (4-1) of {13]. However, (41) is NOT the continuous limit of
(15) with radial weighting, since Vlza‘gy(ﬁf(z)) = (f;z; + 14 — L5)f(z), which is not the radial
part of the 2-D Laplacian. On the other hand, %ig;(::f(z)) = (f—:; + 24 f(z), which is the radial

part of the 3-D Laplacian. This shows that the results of [13], derived for the continuous 3-D case,

do not apply ezactly to the 2-D case (as do the results of this paper);

4. The algorithms of this paper require the differences of the radial parts and transverse parts of the
Laplacian of the covariance to be separately zero: (13) and (14) must be separately zero. However,
in the continuous limit, we have h(z, Ny:n, N3) = h(i — %,Nl;n, N3), and the last two sums in (11)
may be combined. Then it suffices for the sum (A, + Ag)K (i, Ny; 7, N3) = 0, rather than (13) and

(14) separately. This agrees with the requirement (A; — Ay)K(z,y) = 0 for the algorithms in [13].

D. Application to Discretized Continuous-Parameter Problems

We can draw some important conclusions from these observations. If the algorithms of this paper are

being used to solve the discretized version (6) of the Wiener-Hopf equation (5), then :
1. Equations (30) and (31) may be replaced with the approximations Vt ~ X* and V- = X~ ;

2. By the chain rule, any continuous function of the distance between two points will satisfy (13) and
(14). since the square of the distance itself does. Hence the algorithms may be used for any isotropic

random field. Note in particular that (32) becomes
K (i, Ny j, Ng) = p& (F 457 -Bicosl M= lalte) (42)
andp53-1a56,—~0;

3. Conditions (13) and (14) may be replaced with the more general condition

(Ar + Ag)K (i, N1; 5, Np) = 0.

Numerical studies have shown that approximation (4) gives very good results for §, =~ 0.001, but approx-

imation (6) is much more sensitive to non-infinitesimal é,.
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V.  COMPLEXITY AND GENERAL TOEPLITZ-PLUS-HANKEL
SYSTEMS

A. Computational Complezity

We determine the number of Multiplications-And-Divisions (MADs) needed to solve (4) up to order
i = I;mgz. Although some current DSP chips can perform muitiplications as quickly as additions, the fact
remains that multiplication is a more complex operation than addition. Also, the computational savings
in the number of additions is similar to that for MADs, although we omit details.

The initialization of the Levinson-like recurrences requires 2 M x M matrix inversions and 4 M x A
matrix multiplications, or 2(M§-3- + _Agi) + 4M3 MADs. The initialization of the Schur-like recurrences
requires 81,,,- M x M matrix multiplications , or 81,,,; M3 MADs. Each Schur-like recursion update of
s{i,Ny;J,Ny) from ¢ to i + -;- requires 16(I,,,; — i)M? MADs. Computation of the potentials requires 4
M x M matrix inversions and 6 M x M matrix multiplications. Finally, updating h(z, Ny;j, N2) from ¢
to i + 3 in the Levinson-like recurrence requires 4(2i + 1)M? MADs. The total number of multiplications

needed to solve (4) up to 1 = I, is

3 g M M? 3 ‘e A ar2 M2 M? 3 . 2
M+ 2=+ =) + 8lmac M7 42 > [16(Imaz — )M? + (4( + 57) + 6M°) + 4(2i + 1)M?]
=1
68 M3 M3 M?
=241  M? + Imaz(—3— + 4M?) +4M3 + A5 +5) (43)

This can be seen to be O(I%,,M?) MADs if Imar >> M >> 1. Solution of (4) using Gaussian

elimination would require (21'"‘:{M)3 + (21'"“2’M)2 = O(I3,,.M?) MADs. Hence the savings in MADs over

Gaussian elimination for large 4, and M is a factor of order I M.

B. Comparison with Reformulation as a Block-Toeplitz System

In [20] Merchant and Parks noted that a Toeplitz-plus-Hankel system of equations can be reformulated
as a block-Toeplitz system of equations with 2 x 2 blocks. Although no multichannel generalizations were

discussed in [20], it is not difficult to show that a system of equations in which the system matrix is
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the sum of a block-Toeplitz matrix and a block-Hankel matrix, where the biocks are M x M, can be
reformulated as a block-Toeplitz system of equations with 2M x 2M blocks. This could then be solved
using the multichannel Levinson algorithm. We now compare this approach, which we call the generalized
Merchant-Parks procedure, to the algorithm of this paper.

If the generalized Merchant-Parks procedure is used to solve (4) up to order i = I,,,,. the number
of MADs required is 32/2,, M3 + I,,.,,Z(S—A;;’3 + 2M?), since 2M x 2M matrices are being multiplied and
propagated. Hence if [,z >> M >> 1 the algorithm of this paper requires roughly ;i—, as many MADs
as the generalized Merchant-Parks procedure; for large M this can be quite significant. If M = 1 the
algorithm of this paper reduce to that of [14]. which requires roughly 75% as many MADs as the original
Merchant-Parks procedure [20].

On the other hand, the algorithm of this paper requires that the system matrix be block Toeplitz-
plus-Hankel with Toeplitz-plus-Hankel blocks. while the generalized Merchant-Parks algorithm does not
require the blocks to have special structure. Thus the generalized Merchant-Parks algorithm requires

more computation, but solves a more general problem.
C. Solution of Arbitrary Toeplitz-plus-Hankel Block Toeplitz-plus-Hankel Systems

Equation (4) can be written as the following Toeplitz-plus-Hankel block Toeplitz-plus-Hankel system:

I+K_i-; -+ K.
6 H,_(-y - H ) -1
-I H_, oy - H_, i) O
K; - - T+ K,
ét.—l o --- 0 éi,i
= - (44)
Seii 0 -~ 0 §-.‘,.‘
where
Hios)lmn, 2 A£G N5, Np), = =(i=1),...,(i=1),1 S N, Ny < M (45)
(K, dmn, 2 KGN LNG), = —(i=1),. ., (i—= 1), 1< N, Ny < M (46)
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(Stisilny Ny 2 s(26, Ny3 i, Ng), 1 S Ny, N, € M (47)

In (44)-(47) I is the M x M identity matrix and 0 is an M x M matrix of zeros. Conditions (13)
and (14) are equivalent to requiring that the system matrix in (44) be block Toeplitz-plus-Hankel with
Toeplitz-plus-Hankel blocks.

In this section we solve a Toeplitz-plus-Hankel block Toeplitz-plus-Hankel system of equations having

the same system matrix as (44), but with an arbitrary right side. This system is

( I+K_i-i -+ Ko
X_; X_(,'_l) e X xi]
K, e T+ Ky
= B-—i B—(i—l) Bi—l Bx] (48)

where the right side is arbitrary. Recall that the algorithms of this paper dc not require the system
matrix to be symmetric. To find the solution )’((é [X-iy...,X;]), note that from the definition (21) of

s(t. Ny:7..¥,) we have

i I+K_;-i -+ K_;;
H,
H_.
Ki_i - I+ K,
L .
gl_m+1'_, R gi-—m+l,—(;—m+l) o --- 0 é|'—1'n,-+-l,|‘—rn-§-l gi—-m+l.i
o (49)
S_fiem+l)=i 0 S—(imma1)=(i-m+1y O - 0 S_(_mi)icma S_(i=m+1).i
where
m m-1
Hm = Io,...,0,H,‘_m+1__(,‘_m),...,H.‘_m+1,,'_m,—1,0,...,0 (50)
H_m = {—I,O, ...,0, H—(t-m+l),—(i—m)v ey H_(‘_m+1)‘i_m,0, ...,0 (51)
m~-1 m

Equation (44) is a special case of (49) with m = 1.
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Assume that all of the central submatrices of the system (44) are non-singular. Then the urique

solution to (48) can be expressed as a linear combination of Hy,,m = —1,...,7 by using (49)
X= Y CuHn(ieX;=)Y CHy) (52)
m=—i,m#0 I=—i

Here C,, can be found by equating the linear combination (52) to (48),for 1 < j < (i~-1):

j=1

C_;5,-;+C;iSj, = —-(B_j+ Y, CaSn_j) (53)
n==(-1)

C-;iS.;;+C;S;; = —(Bj+ D CuSa)) (54)
n==(-1)

The overall procedure is as follows. Compute the H;; and S; ; using the Levinson-like and Schur-like
algorithms. Next, recursively compute Cy; in increasing j by solving the 2M x 2M systems (53) and
(534). Finally, compute X using (52).

The procedures in (52-54) require roughly 412, M3 MADs, which for I,z >> M >> 1 dominates
the 2472,,,M? MADs that is the dominant term in the number of MADs (43) required by the basic

algorithm. For an arbitrary right side, the generalized Merchant-Parks algorithm requires 4812 _Af3

mazr

MADs. Thus the algorithm of this section requires only 'ili as many MADs when I, >> M >> 1.

VI CONCLUSION

New fast algorithms for solving the discrete two-dimensional Wiener-Hopf equation on a polar raster when
the covariance function has Toeplitz-plus-Hankel structure ha -: been derived. Since we have performed
explicitly discrete derivations, instead of just discretizing the continuous versions {13}, the algorithms
do not require fine discretization or closely-spaced points; if adjacent points are close enough, then the
algorithms reduc;z to the continuous case [13]. In particular, the proposed fast algorithms make full use
of the Toeplitz-plus-Hankel structure of the covariance function, so that the overall computational com-
plexity is only O(I2,,M?) MADs, as opposed to O(f2,,,M3) MADs for the generalized Merchant-Parks
algorithm discussed in the paper and O(J3,, M3) MADs for Gaussian elimination. These algorithms are

also highly parallelizable, making them even more favorable in a vector/paralle]l processor environment.
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The smoothing filier for estimating the points inside the disk of observations can be computed from
the prediction filters usiug a generalized discrete Bellman-Siegert-Krein identity, as was done for the
one-dimensional continuous case in [3]. The overall complexity is reduced compared with Gaussian
elimination. This is considered in the separate paper [8].

Unresolved issues include mapping o1 this algorithm into optimal array processor architectures, the
numerical stability of the algoiithm, and practical applications of this zizorithm in problems such as

image restoration and coding. Preliminary results on these issues have been encouraging.
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FIGURE HEADING

1. The polar raster on which the two-dimensional random field is defined, where M = 8

22




(3,3)

- — e -

(3,4,

(3.6)

(3,7)

\

@® denotes the real point

O denotes the interpolated point ®

23 o




APPENDIX D



A. Basic Prcolem

The problem considered is as follows. From noisy observations {y; v m} of a zero-mean real-
valued discrete random field {z; v ar} at the points (i, N, M) inside a sphere, compute the lirear
least-squares estimate of z; v a for all points on the edge of the sphere. Here i is an integer radius
from the origin, and .V and M are the integer indices of the arguments (angles).

The observations {y; v p} are related to the field z; v M by yiNM = Zin M + vinN M, Where
{vinm} is a zero-mean discrete white noise field with unit power, and {z; na} and {v; Na} are
uncorrelated. The covariance of {z; y.a1}, E[zi N, M, 2N, M) = K(i, N1, M1, §, N2, M3), is assumed
to be a non-negative definite function with Toeplitz-plus-Hankel structure shown in (6) and (7).
The estimates of z; yas at the edge of the sphere are computed from the observations {y; n.ar}
using

-1 N M

ji,N;.M; = Z Z Z h(i,N1,M1;j,N2,M2)yj'N2,M2 (1)
3=0Ny=1Mz=1

The optimal prediction filters h(i, N1, My; 7, N2, M3) are computed by solving the three-dimensional

discrete Wiener-Hopf equation

K (i, Ny, My; J, Noy Ma) = h(i, N1, My; j, N2, M2)
=1 N M

+ 3 Y Y (i, N1 Myin, N3, M3)K(n, N3, Ms; j, Ny, M) (2)
n=-(i~1) Na=1 M;=1

forall -(:-1)<j<i-1,1 < N,N, £ Nand 1 < M;,M; < M. The goal is to derive a
fast algorithm for solving (2) when K'(i, N1, M1;j, N2, M2) has the Toeplitz-plus-Hankel structure
shown in (6) and (7) below.

B. Derivation of the Levinson-Like Recurrence

Define the discrete wave operators A,, Ag and Ay by

1

. X o1 ) .
Arf(zthMl;JaN%Mz) = f(l + EiNl’Ml;],N29M2) + f(l - 2

lele;j9N27M2)




. o1 . R |
- f('aNl7‘Ml;.i + §’N21A"2) - f("’NlaMl;J - §7N23M2) (3)
®
. . .1 . | .
Ao f(i, N1, My; jy Ny M) = f(i = 5. (N1 + 1)), My; j, No, M2) + f(i = 5, (N1 = D)1y Mai g, N2)
.1 . .1 .
- f(l - §’N17M1;J$((N2 + 1))1aM2) - f(’ - -2'7N1’M1;J,((N2 - 1))lv M'Z) (4)
. . | . | . e
Atbf(z’leMl;J’N?’M?) = f(2 - E,va((Ml + 1))2;.]1N27M2) + f(’ - §9N17((Ml - 1))2;]’N2)
S | . .1 .
- f(" - E,NI,MI;JsN27((M2 + 1))2) - f(1 - EaNla MI;J1N27((M2 - 1))2) (5)
where A, ,Ag and A4 can be regarded as discrete versions of the continuous operators ( -5%3—1 - ®
2 ) (- — 5 d (s — s2-) for the radial part and t tively, and
753 ) (-539—1 573;), an (5,—& W) or the radial part and transverse parts, respectively, an
((*))1(2) means the mod N(Af) operation. To save space, we will omit the ((-)) in the following
derivations. We assume that the covariance function has the Toeplitz-plus-Hankel structure that ®
satisfies the following forms
ArK(ilele;j7N2’M2) =0 (6)
@
(AO+A¢)K(i,N1,M1;j,N2,M2)=0 (7)
Applying the Laplacian operator A = A, + Ay + A, to the equation (2), we have after some
algebra 9
o1 . . .1 . R |
h(i + §9NhM1;JsN27M2) = h(i, N1, M55 + §aN21M2) + h(i, N1, My;j - 35> V2, M)
1 . .1 , .1 .
—h(z - §7N11M1;]7N2, MZ) + h(l - §$N1’Ml;]aN2 + 17M2) + h(’ - §9N11M1;J9N2 e 1’M2) '
o1 . A | . .1 :
—h(l - _2'$ Nl + 17M1;17N21 M?) - h(t - E’Nl - 11Ml;JsN2aM2) + h(! - Ea‘lvlle;Jv N2’M2 + 1)
.1 . .1 . .1 .
+h(z‘53N13M1;19N2"17M2—1)_h(’_'2"leMl+1;]aN21M2)_h(’_§!N11M1—1;]1N21M2) .

N M
1 ) _ .1 .
+ Z [Vi+(N1,M1;N3,M3)h(’“§,N3,Ms;J,Nz,Mz)-i-V} (NuMl;Ns»Ma)h(-‘i'i'E,Ns,Ms;J, Nz, My)]
Ni=1 M;=1
(8)




for all —(i — %) <j<(i- %), 1< Ny,N2< Nandl< M,M; <M. Here we have defined the

potentials
A | .1 . .
V(N My N M) = —[h(i + §,N1,M1;1 -5 Na, M3) — h(i, Ny, My;i— 1, Np, M3)] (9)

1 A | . .
V.= (N1, My; N2y Ma) = —[h(i + §,N1,M1; -t 4+ E,Nz,Mz) - h(i, N1, M1;~i+ 1,N2. M) (10)

C. Derivation of the Schur-Like Recurrence

We still need to calculate the potentials V¥ (N, My; N2, M2) and V;” (N1, My; N2, M) at the
beginning of every update so that we can use the recursive formila (8). Since an inner product is
a bottle neck in a parallel processing environment, we overcome this difficulty by introducing the

Schur variables

S(‘i, F-rI,Ml;js N27 M2) = 6i.N1,M1:j.N2,M2 + K(i;Nh Ml;ijQ’M2) - h(” N17M1;j?N27 MZ)
N M

-1
- Y Y 3 h(i, Ny, Mi;n, N3, M3)K(n, N3, M3; j, N2, M2) (11)
n=—(i=1) Na=1 Ma=1

where 6; n; M, ;i N2, M2 = O unless i = j, Ny = Nz and My = Ms, in which case it is unity.
Since the Schur variables are the linear combinations of the prediction errorfilters é; ny M, ;. N, My —
h(i, Ny, My;j, N2, M,), equations (8)-(11) show that s(i, N1, M1; j, N2, M) satisfies the recurrence

(8). but now for all 3:
o1 . . | . .1
s(1+§,1\x,M1;J,N2,M2)=3(1,N1,M1;J+§,N2,M2)+3(”vaMl?-7_§’N'~”M2)

o1 . .01 ) A | .
-s(1 - E,Nl.Mx;J, No, Ma) + 8(i - E,NlaMl;J,N2 + 1, M3) + s(i - §,N1,M1;J,N2 - 1,M3)
. | ) S | ] | .
—3(2 - '2—~Nl + 19M1;J’N2’M2) - S(t - '2'1N1 - 1)MI;J’N27A!2) + 3(' - ‘2-’N19M1;JyN2sM2 + 1)

o1 . .1 . o1 .
+3(1_EaNl’Ml;JyN2"lsM2"1)—8('°§le9Ml+l;JaN2,M2)—3(‘—§,N17M1—1;17N29M2)

N M
1 . — 1 )
+Y ) [V.'+(N1,Ml;Ns,M3)8(1—5,N3,M3;J,Nz,M2)+V.- (Nl,Ml;Na,Ma)s(—1+§,N3»M3;J,stMz)]
N3=1M;=1
(12)




Equation (12) is the basic recurrence for the Schur-like algorithm; for —(i — 1) < j < (: - 1),
s(i N1, My;j, N2y M) = 0 by (2).
Setting 7 = (¢ — %) and —-(i - %) in (12) respectively, we can solve for V;* and V™ using the

following matrix equation

st s ]
(st vse ][ v ]| |
st | 57~
where we have defined the NM x NM matrices ‘
(5541100 = s(2(i = 5), N1, Mis £ = 3), N3, M) (14)
(VEILitp = ViE(N, My; N2, M) (15)

= .1 .1 . .
[S?:]tha = 3(1 - Ele’Ml;i(z - 5)’N2’M2) - 8(17 Ny, My 14, N27M2)
1 A |
+(A9+Ad’)s(i-E,Nl,Ml;i(“‘E)yNZaM2) (16)
and Ly, Ly are related to Ny, My, No, M, by

L (N - )M + M, (17)

I, = (N2 - 1)M + M, (18)

foralll1 < N,No <N, 1< My,M;<M,and 1< L,,[,<NM
D. Summary of Qverall Procedure
The overall procedure can be summarized as follows. Let I,,,, be the largest radius (maximum

radial predictiop order). Then forall 1 < Ny,N; < Nand 1< M;,M; < M:
1. Initialization
Compute h(i%,Nl,Ml;O,Ng,Mz), h(£1, Ny, M;;0, N3, M3) using (2).
Compute s(£1, Ny, My; j, N, My), si21. Ny, My; j, Na, My) using (1 for all j = £1,..., £2 ey
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2. Propagation of Split Schur-Like Algorithm
A Computate the potentials VY (N, My; Nay, M3) and V7(Ny, My; No, M3) by solving the
matrix equation (13});

B Update the Schur variables using (12) for j = £(i + 1),..., 22/,

3. Propagation of Split Levinson-Like Recurrence

A. Propagate the Boundary Points:

1 .
hii + %,.’Vl,Ml;i - 5,N2,Mz) = h(i, Ny, My;i = 1, N2, M) = V¥ (N, My Noy M) (19)

1 . . -
h(t + %,AVI,M]; -t 4 5, N'),M’)) = h(‘y Nl)‘wl;—'+ l’szM2) - Vl (Nl?Ml;‘Vz"’M2) (20)
B.Propagate Non-Boundary Points:

Update h(i. Ny, My;j, N2, M;) using equatior (8) for j = —(i — 3) to j = (i - ).

4. Repeat steps 2 and 3 from i = 1 to g, with increment %

Thc overz!l procedure is similar to the that for the 2-D algorithm, except that now
there are two instead of one angular variables needed to be propagated. The number
of MADs required is roughly O(I%,,N*M?), which is far less than O(13, v +f%)
MADs required for the generalized Merchant-Parks algorithm and O(I3,,N3M?)
MADs for Gaussian elimination. Hence, the computational savings in the 3-D case
are even more significant than those in the 2-D case. Furthermore, these algorithms
are also highly parallelizable, making them even more favorable in the parallel pro-

cessor environment.
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Abstract

New fast algorithms for linear least-squares smoothing problems in one and two dimensions
are derived. These are discrete and multidimensional generalizations of the Bellman-Siegert-Krein
resolvent identity, which has been applied to the continuous, one-dimensional stationary smoothing
problem by Kailath. The new equations relate the linear least-squares prediction filters associated
witn discrete random fields to the smoothing filters for those fields. This results in new fast
algorithms for deriving the latter from the former. In particular, used in conjunction with recently-
developed generalized one (two) dimensional split Levinson and Schur algorithms for covariances
with (block) Toeplitz-plus-Hankel structure, these algorithms can be used to compute smoothing
filters for random fields defined on a polar raster, using fewer computations than those required by
previous algorithms.




I INTRODUCTION

In tomographic imaging problems solved by filtered back-projection {1], and in spotlight synthetic
aperture -adar [2], data are acquir~d on a polar raster of points, rather than on a rectangular lattice.
Although it is possible to interpolate from the polar raster to a rectangular lattice, it is clearly
preferable to deal with the data as it is. This is particularly true if the data are noisy, and smoothing
is required.

Regarding the data as a random field with a known covariance function, linear least-squares smooth-
ing may be performed. Computation of the smoothing filter requires solution of two-dimensional dis-
crete ..ormal equations in polar coordinates. Fast algorithms for solving these equations are desirable
when the covariance has some structure. However, properties such as stationarity are not manifested
as block-Toeplitz structure when the random field is defined on a polar raster. For example, the
covariance of an isotropic random field on a rectangular lattice is a Toeplitz function of the abscissae
and ordinates, while on a polar raster it is a Toeplitz-plus-Hankei function of the radii.

Kailath [3] has noted the applicability of the Bellman-Siegert-Krein (BSK) resolvent identity to
smoothing problems for continuous one-dimensional stationary random processes. First, the prediction
filter for the process is computed, using the continuous-time Krein-Levinson equations, or by direct
solution of the Wiener- Hopf integral equation. Then the BSK identity is used to compute the smoothing
filter, which is the Fredholm resolvent to the integral operator associated with the covariance function.
This approach has been extended to continuous-time close-to-Toeplitz covariances [4] and continuous-
parameter isotropic random fields [5], although the latter uses a Fourier expansion into one-dimensional
processes.

In this paper we generalize Kailath’s approach in three ways: (1) from continuous time to discrete
vime, resulting in an algorithm directly applicable to real discrete data; (2) from one dimension to two
dimensions, without requiring an assumption of isotropy or an initial Fourier expansion;: and (3) from

stationary to non-st2tionary random fields.




Although the new algorithms of this paper do NOT require the covariance function to have special
structure, they are most useful when used in conjunction with fast algorithms for cemputing the
prediction filters that DO require and exploit special structure in the covariance function. These
include the Levinson algorithm [6] for stationary one-dimensional random processes, the algorithm of
[7] for non-stationary one-dimensional random processes with Toeplitz-plus-Hankel covariances, and
the algorithm of [8] for two-dimensional random fields on a polar raster with Toeplitz-plus-Hankel
structure in the radial and angular variables of the covariance.

The paper is organized as follows. Section II derives the algorithm for computing the smooth-
ing filters from the prediction filters for one-dimensional random processes. Section III derives the
corresponding algorithm for two-dimensional random fields on a polar raster. Section IV discusses
computational complexity, and compares the proposed algorithms to other algorithms for comput-
ing the smoothing filters. We also note how the discrete-time equations of this paper reduce to the

continuous-time equations of {3] and [9]. Section V concludes with a summary.

I DERIVATION OF THE 1-D SMOOTHING FILTER
A. The Basic Problem

The smoothing problem considered in this section is as follows. Given noisy observations {yx,-M < k < M}
of a zero-mean real-valued random process {z;}, compute the linear least-squares estimate of z; for
each k using all of the observations. The observations are related to the process by yix = zx + ni,
where {nt} is zero-mean discrete white noise with unit power uncorrelated with {zx} (white noise

with arbitrary power o?

can easily be handled by scaling). The covariance function &, ; 4 E[z;z;) of
{zx} is known, and is assumed to be positive semi-definite.
The linear least-squares estimate Z; of z; based on {yx,—M < k < M} can be expressed as

M
= Y oMy 1)

=M

where the superscript M for g,‘-‘g denotes that the range of the data is from y_ps to yps . Using the




orthogonality principle of linear least-squares estimation, the smoothing filters g{‘j can be computed

by solving the discrete normal equations

M
kij=gll+ > glikn;  for ~M<ij<M (2)

n=—M
In the special case when i = M + 1, equation (2) becomes the discrete Wiener-Hopf equation
M M
KMt = OMa1s+ 9. IMarnkng = hMeri+ D AMiinka; for —M<j<M  (3)
n=—M n=—M

where hary 2 gﬂﬂ_j is the prediction filter. The h; ; are assumed to have been already computed,
presumably using some fast algorithm such as those of (6], [7], or [8]. Our objective is to derive a
recursive formula for computing the smoothing filters gﬁ from the previously computed prediction

filters h,‘_J‘.
B. Derivation of the Algorithm

Writing (2) with M replaced by M + 1 and subtracting (2) gives

0= (gM+' - gM)+ Z [(g¥F = oM kni + gl F e i) + 9 pk-eny; (4)
n=-M

Inserting (3) in (4) results in

= (gM*! - gM) + Z (gM*! - gM )k 5
n=-M

M

+ 0y (a1, + ZM"(MH)mkna‘]+92!.4('11w+1)[h—(M+1)‘j+ ZMh—(M+1),nkn,j] (5)
n=— n=-—

and reordering (5) gives

(gM+1 - gy + Z (gM+ — gM kn
n=—M

M
= —[gi.(;ll-rl)h(M*'l)J + 93'_711»:+1)h-(M+1)d] - ): (9 (M+1)"(M+1)m +g-.-(M+1)h (M+1)lkn,; (6)

n=-M

Since the covariance function k;; is positive semi-definite by assumption, é;; + k;; is positive

definite, and the solution to any system of equations with system matrix consisting of §,; + k; ; must




be unique. Therefore, we have

(gM+! - o= —[gﬂLll)h(Mﬂ),j + g,~IM_*[1lu+1)h-(M+1),j] forall -M<i,j<M (7)

Equation (7) allows gﬁ“ to be computed recursively from g,"g and the prediction filters hy(pr41),;-

Note that g,“f and hy(p41),; may be computed in parallel.
C. Computation of Boundary Points

In order to use (7), the boundary points gf";z}w +1) must be computed first. This can be done as

follows. Setting j = £(M + 1) in (2), we have

M
(14 ks ey — 2 ey nknvaenlol (i
n=-M
M M

+ ko (Man(Me1) = D h-(M+1).nkn,(M+1)]g,}-tl_*('i;+,) = ki meny — O Gibknmeny  (8)
n=-M n=-M

M

(kM) ~M41) = D h(M+1).nkn,_(M+1)]9,%T}+1)
n=-M

M M
L+ By mms) = D BoMatynkn )]G trrany = Kim ey = 2 Gimkn(a) (9)
n=-M n=-M

These equations can be written as a 2 X 2 matrix equation for each of the unknown g:M;('}w +1);

1+ k(Ma1)(M+1) = Tome—p R M1 mEn (M1 ko (M+1),(M+1) — ot Be (M41) nFn,(M41) ]

k(M+1).-(M+1) = Tome M Bptetynkn—r41) 1+ E_(Ma1)~(M+1) = Tmee b Bo(Ma1),nkn-m41) |

M+1 -M M
9 ki(m Ln=-M Ginkn (M

,(M+l_) (M+1) M Tinn(M+1) (M+1)<i<(M+1) (10)
Q.M,-*(’IIWH) ki—(M+1) = Ln=-M Jinkn,-(M+1)

where we have used the identities A(pr41)n = g(",{,“)m and h_(pmr41)n = gf’(MH)'n. Note that the

system matrix in (10) is independent of i.

D. Summary of 1-D Algorithm




Given the data {yi} in the interval [-L, L], the entire algorithm for computing the smoothing
filters may be summarized as follows:

1. Initialize using g!'" - hi; for all —(Ji| = 1) < j < [ - 1.

2. Given gf"’;, —M <i,j < M, update to gﬁ“ as follows:

a) Compute the boundary points gM+ and gM_ +1 by solving the 2 x 2 system (10).
p i(M+1) i, —(M+1)

(b) For each i and j, —-M < i,j < M, compute gi+!

i from g,"g using (7). If k; ; has special

structure, compute h; ; in parallel using a fast algorithm (e.g., those of [6] or [7]).

(c) Continue for M = |i| — 1 to L.

III DERIVATION OF THE 2-D SMOOTHING FILTER ON A
POLAR RASTER |

A. The Basic Problem

Now we consider the smoothing problem for a two-dimensional random field defined on a polar
raster, whose points lie along radial lines in 2V angular directions (see Fig. 1). The problem considered
is as follows. Given noisy observations {y;x,0 < i < M,1 < k < 2N} of a zero-mean real-valued
discrete random field {z;x} at the points (#,k) of a polar raster on a disk, compute the linear least-
squares estimate of z;, for each (i,k) using all of the observations. Here the first subscript denotes
radial distance from the origin and the second subscript denotes angular position (k corresponds to
the angle 27k /2N).

The observations {y; x} are related to the random field {z;x} by ¥ix = i + nix, where {n; i} is
a zero-mean two-dimensional discrete white noise with unit power uncorrelated with {z; r} (white noise

2 can easily be handled by scaling). The covariance function k; n,;j,N; 2E (i N 25,3, ]

with arbitrary power o
of {z;i} is known, and is assumed to be positive semi-definite.
From Fig. 1, it is clear that the point (i, k) = (—i,k+N); in the sequel the point (i,k),N +1< k < 2N

will be denoted by (—i,k—N). The linear least squares estimate &, n, of z; v, basedon {y;:,0 < j < M,




1<k <2N}= {yjk,—M < j < M,1< k< N} can be expressed as

M N M
:E".Nx = Z Z 9i.Ny:i,N, Yi.N2 (11)
j=-—M Nz=1

where the smoothing filters ngl .j.N, satisfy the two-dimensional discrete normal equations

M N
kiNigne = 0ot 2. O 9Nk NN — M <ij <M, 1SN, N <N (12)
n=-M N3=l

A radial weighting n can be introduced into the double sums in (11) and (12) by replacing ki n,:;.N;
and gM, N, with \/ijkin, N, and i5gMy iy 5 this allows the algorithm to be applied to a dis-

cretized two-dimensional integral equation.
B. Derivation of the Algorithm

The derivation is identical to that for the one-dimensional case, since the angular sum is unaffected

by the increase of the radial sum from M to M + 1. The result is (compare to (7)):

N N
M+1 M — M+1 . M+1 .
9i Ny i Ng ~ 9NN, = —[ Z gi,N;;M+l,N3hM+1.N3;J-N2 + Z g.‘_Nl;_(MH),Nsh-(M+1),Nw.Ng] (13)
Ni=1 N3=1

forall —M<i4,j<M,1<N,N;<N

Here the h; NN, a g"'};llsz ar2 the two-dimensional prediction filters. The h; n,.; N, could be

computed recursively in parallel with (13), using the fast algorithm of [8].
C. Computation of Boundary Points

As before, we need to compute the boundary points gfx:i)( M+1),N, Prior to using (13). Setting

Jj = (M + 1) in (12) results in the equations (compare to (8) and (9))

N N M N

M+1 M+1 M+1
(G0N M D IN M LN M+ LN ML = D GN N Do D AMa1Nen Ny kn NsiM+1,8,)]

N3=1 Ny=1 n=—-M Na=1
N N M N
+1 +

+[ Z gi.Nx;-(M+1).N3k—(M+1).Na;M+1,Nz' E 9.',~,;-(M+1),N.( Z Z h-(M-H).Mm.Nakn.Na;(MH).Nz)]

Ni=1 Ny=1 n=-M N3=1

MoNC
= kiNMan N = 2 O 9NN En NsiM+1) N (14)
n=-M N3=1
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and
N M N
Ni=1 Ny=1 n=-M N3=1

N
(M+1) (M+1)
+[96.N1 i=(M+1),Ng + NZI 9§ Ny;=(M+1),N3 k-(M+1),Ns;—(M+1)vN:
3=

N M N
M+1
- gf,N,;_)(MH),N,( Y D Ao (Man)NanNkn Noi-(M41)8,)]
Ni=1 n=-—M N3=1
M N M
= ki,N1;—(M+l).N2 - E Z gl'-Nx;ﬂ,Nskﬂ.Na;—(M+l).Nz
n=—M N3=1

If we define the following N x N matrices (1 < Ny, N3 < N)
[Gi] A M+1
NiN2 = 9 Ny (M+1).N,

a
[KE*]n N, £ i (M41)Ny i (M+1).N,

M N
it A
HEKEv M 2 Y D0 ha(Mat) MmN Kn Nyt (M+1)N,
n=-M N3=1

and then define from equations (16)-(18) the additional N x N matrices
A2I4K* —H'K*, B2K*-HK*

C2K*+ -H*K-, D2I+K - -H K-
M N

A M
RIN N S kin M) Ne = D O GiiinNs K Nos(M+1),Ns
n=-M N3=1

M N
A M
[S]N1|N2 = ki.Nl;—(M-f-l).Nz - Z Z g‘,Nl;n,Nakn,Ns;—(M‘Fl),Nz
n=-M N;=1

then equations (14) and (15) can be written in matrix form as
GtA+G™ B=R

G*C+G™ D=S

N
M+1 M+1
[E g,‘_m:t;M+1_N3kM+l,N3;-(M+]),N3 - Z gi,Nx;—(M-H).N‘( E Z hM+1.N1;n,Nskn,Ns;—(M-'»l),Nz)]

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)




Equations (23) and (24) are a 2N x 2N system of equations for G* and G~; compare them with (10)

A B
(for which N = 1). However, a further simplification is possible. Since the system matrix
C D
is the same for each 7, equations (23) and (24) can be solved in closed form to give
G* = (R-SD"!B)A-cD"!B)! (25)
G- = (S-RA"!CYD-BA"IC)? (26)

independent of i.

Hence computation of the boundary points gm;wmm for all i requires only the inversion of
four N x N matrices in (25) and (26). This is significant, since ihe swooining fliers g%,“j‘,\,2 will
generally be computed for all ¢ and Ny, N, (we generally wish to smooth all or most of an image, not
just one pixel). This is where our algorithm saves a significant amount of computation, as compared

with other algorithms (see below).
D. Summary of 2-D Algorithm

Given the data {y;x,—L < i < L,0 < k < N}, the entire algorithm for computing the two-

dimensional smoothing filters may be summarized as follows:

1. Initialize using g!"};ll;j'Nz = hiny;jN, forall —(jij—1) < j<|ij-1and 1 < Ny, N, < N.

2. Given g?.lNl;j,Nz? ~-M<i,7<M,1<N;,N, <N, update to 95{3% as follows:
(a) Compute the boundary points gm ;I(M +1)N; and g%}t ;l_ (M+1).N3 by solving in parallel the
2M + 12N x 2N systems (25) and (26).

(b) For each i and j, - M < i,5 < M, and each N; and N;,1 < N;, N; < N, compute gﬁ"h}‘;b’m
from gf‘:’Nl .j.N, using (13). If k; n,.;N, has special structure, compute h;n,;;,N, in parallel

using a fast algorithm (e.g. the algorithm of  [8]).

(c) Continue for M = |i] -1 to L.




IV. COMPUTATIONAL COMPLEXITY

We determine the number of Multiplications-And-Divisions (MADs) needed to compute the smoothing
filters from the prediction filters. We also determine the total number of MADs needed to compute the
smoothing filters from the covariance function, assuming that the latter has special structure and a
fast algorithm has been used to compute the prediction filters. Although some current DSP chips can
perform multiplications as quickly as additions, the fact remains that multiplication is a more complex
operation than addition. MADs can still be used as a rough guide to the computational complexity

of an algorithm.
A. Computational Complezity of the One-Dimensional Algorithm

The number of MADs needed to compute the smoothing filters from the prediction filters, given
data {y;,—L < j < L}, can be determined as follows. For each i, updating the smoothing filters from
gg to gg“ (this corresponds to adding two data points at j = M + 1 and j = —(M + 1)) requires
6(2M +1)+8 MADs to compute the boundary points gfw;('}w +1 (the six sum-of-products computations
in (10)), and 2(2M + 1) MADs to update the other g% to gﬁ“ in (7). The total number of MADs
to compute gfj for one i and all j is thus Eﬁ‘hli'_l[S(ZM + 1) + 8] = 8(L? — %) + 24L + 8| + 16.
However, the total number of MADs needed to compute g.-l"j for alli and j is only Sk, [4(2M + 1)+
2+3L_, Zk,=l,~|_l[4(2M +1)+6] = 5113 + 34L2 + 484 + 12, since the system matrix in (10) is
independent of ¢, and thus need not be re-computed and re-inverted for each 1.

In the sequel, we assume (for purposes of comparison) that L >> 1 and ¢ >> 1. Then the dominant
terms in the number of MADs are the terms of highest order in L and i. To facilitate comparisons,
only these dominant terms will be given.

If the covariance k; ; is Toeplitz, i.e. {z} is a stationary process, then we have k; ; = kj;_;; = k—i -;
and g,‘z = gf‘_”l-’_ j from (2). Then two of the four sum-of-product computations in the system matrix of

(10) are redundamt, so that computation of gf; for one i and all j requires only 6(L? - i) MADs. Also,




Tovariance Filter for LTZ or MP | L+BSK or [7]+BSK
Symmetric single point i 8L2 10L?% — 6:2
Toeplitz all-L<i<L 4L3 2413
Toeplitz-plus- | single point ¢ 64L2 32L2 - 8:?
Hankel all -L<i<L 64L3 5313

Table 1: Numbers of MADs required for some specific covariance functions to solve (2)

Cova:iance Filter for LWR or MP | LWR+BSK or (8]+BSK
Block single point 1 10L3N3 (14L% - 8i%)N3
Toeplitz all-L<i1<L 8L3N3 5%L3N3
Block-Toeplitz | single point i 64L%N3 8(L? — i?)N3
-plus-Hankel | all -L<i< L 64L3N3 E)%If"N3

Table 2: Numbers of MADs required for some specific covariance functions to solve (12)

since gfj need only be computed for : > 0, computation of g,—l"j for all 7 and j requires only half as many
MADs as before, viz. 22 L3. Furthermore, the Levinson algorithm (L) [6] may be used to compute the
prediction filters {h;;,—L < i, < L} from k; ;, at a cost of 4.2 MADs. The Levinson algorithm can
be propagated in parallel with our algorithm, resulting in an overall fast algorithm for computing the
smoothing filters gfj from k; ;. If the covariance is Toeplitz-plus-Hankel, the fast algorithm of [7] may
be used to compute the {h;;,—L < 4,j < L} from the k; ;, at a cost of 24L2 MADs, again in parallel

with our algorithm. However, we no longer have gﬁ = gﬁ"“ so the reductions in computation for

-3
purely Toeplitz covariances no longer apply.

The major alternatives to these procedures are the Levinson-Trench-Zohar (LTZ) [10] algorithm
for Toeplitz systems, and the algorithm of Merchant and Parks (MP) [11] for Toeplitz-plus-Hankel

systems. We compare the numbers of MADs required by all of these algorithms in Table 1.
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For a Toeplitz covariance, it can be seen from Table 1 that if g,-LJ for a single point i is desired,
i.e., we wish to compute a smoothed estimate at only one point, then the LTZ algorithm is superior
to ours for small' values of ¢, while ours is superior for large values of i. However, if g{jj for all points
—L <1< L is desired, i.e., we wish to compute smoothed estimates at all points (as would generally
be the case), then our algorithm in conjunction with the Levinson algorithm requires only % as many
MAD:s for large L. Furthermore, for Toeplitz-blus-Ha.nkel covariances, our algorithm in conjunction
with that of [7] requires less than half as many MADs to compute g{jj for a single point i, and &
as many MADs to compute g‘-l"j for all i when L is large. Further savings are possible since many

computations (e.g., the updates and the sum in (10)) can be done in parallel.

M+1

Other approaches may require still more computation. g"g may be updated to g; using the

0.
well-known formula for updating the inverse of a partitioned matrix. However, this requires 372
MADs per update, as opposed to the 8(2M + 1) + 8 MADs required by the BSK identity. Direct

solution of (2) using Gaussian elimination would require 3(2L + 1)3 + 4(2L + 1)*> MADs for each i.
B. Computational Complezity of the Two-Dimensional Algorithm

We now assume that the observations are {y;x,—~L < 7 < L,1 < k £ N}, so that updating the
smoothing filters from g%‘ .Np 1O gm 11 N, corresponds to adding a "shell” of 2N data points at radius
M + 1. For each :, computation of the boundary points gé‘.ll'&t::t(MH).Nz requires 6(2M + 1)N3 MADs
for (16)-(22), and 4 N x N matrix multiplications and inversions for (25) and (26). Updating the other
smoothing filters from gM, . v, to gM}L. \ requires 2(2M + 1)N3 MADs for (13). Hence the number
of MADs needed to compute gly, . y. from the prediction filters for one i and all j is 8(L? - i?)N?,
while the numbef of MADs needed for all i and j is 53 L3N3. Note that these are the numbers for the
one-dimensional algorithm multiplied by N3, since all operations now involve matrices.

In the sequel, we assume (for purpose of comparison) that L >> N >> 1. If the covariance

kin, N, is block-Toeplitz, i.e. Toeplitz in i and j, then the Levinson-Wiggins-Robinson (LWR) [12]
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algorithm may be used to compute the prediction filters h; n,,,.n, from k; n, ., n;, at a cost of 6LZN3
MADs (recall that the backward predictors are no longer the time-reversed forward predictors, in the
multichannel case). If the covariance is Toeplitz-plus-Hankel in both i and j and N, and Ny, as it is
for an isotropic random field on a polar raster, the fast algorithm of (8] may be used to compute the
prediction filters, at a cost of 24L2N? MAD:s.

The major alternatives to these procedures are the LWR algorithm adapted to an arbitrary block-
Toeplitz system, and a matrix generalization of the Merchants-Parks procedure for block Toeplitz-
plus-Hankel systems. Results are summarized in Table 2. The savings are similar to those for the one-
dimensional algorithms, except for the even greater savings for block Toeplitz-plus-Hankel covariances.
The reason for the great savings here is the efficiency of the algorithm of [8], which requires only 24 L*N?
MADs to determine the prediction filters from the covariance function: that is negligible compared to

8(L? —1*)N3 and 53L3N3if L >> N >> 1.
(" Relation to Continuous-Parameter BSK [dentities

It is instructive to examine the continuous-parameter limits of the various equations of this paper.
Let the intervals between points be 4, in the radial direction and &g = %’} radians in the angular

direction. Introducing a radial weighting factor, as discussed below (12), and taking limits as é, and

69 go to zero results in the following transformations:

1. The discrete normal equations (2) and (12) become Fredholm integral equations. Similarly, the
discrete Wiener-Hopf equation (3) and its two-dimensional counterpart become Wiener-Hopf

integral equations;

2. The smoothing filters become the Fredholm resolvents to the integral operators associated with

the covariance functions;
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3. Using g;""MH = QM.H,.‘ = haf41.4, €quation (7) becomes

—(g(z, T;T)A(T,y) + 9(z, -T;T)h(-T.y))

dg )
aT(rv wT)

—(A(T,2)h(T.y) + A(-T,2)h(-T,y)) (27)

where g(z,y:T) is the smoothing function by which an observation at y in the interval [-T,T] is
multiplied and integrated to compute an estimate at z. Equation (27) is the BSK resolvent iden-
tity (modified from [0,T] to (-7, T]), which was applied to continuous-time smoothing problems

in [3]:
4. Similarly, the recursion (13) becomes

J ' ' '
a(lzlezslvley:T) = = [ gllzles, Te' s TIATe' Iyle, ) T*de (28)

where e,.e, and € are unit vectors, z = |zle;,y = |yle, and § is the unit circle. Equation (28) is
identical to the generalized BSK identity applied to a multi-dimensional continuous-parameter

smoothing problem in [9];

5. Since §, ;, becomes a continuous-time impulse, the units in (10) and (19)-(20) dominate the other

terms. Hence the computations of the boundary points (10) and (25)-(26) become, respectively,
T
o(2.5:T) = K(z.9) - [ gz, 5 TIk(z, vz (29)
T
gllzlez, lyley: T) = k(lz|ez, lyley) - /0 /Sg(lzlez,Izlez:T)k(IZIeu |lyley)|zlde.d|z]| (30)
which agree with equations for computing boundary values that appear in [3}-[5] and [9).

Note that although the discretc equaticrs transicriu into the expected continuous equations, the

forms of the discrete equations are not obvious from the continuous equations.

V CONCLUSION

New fast algorithms for computing the linear least-squares smoothing filters for random processes

and fields have been derived. These algorithms relate the smoothing filters to the prediction filters
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associated with the same covariance. If the covariance has special structure, fast algorithms such
as those of [6], [7], and [8] may be used to compute the prediction filters; such algorithms may be
propagated in parallel with those of this paper. This can result in significant computational savings.
However, it is important to emphasize that the results of this paper hold for arbitrary covariances,
and do not rely on the existence of such fast algorithms.

In the limit of continuous time, the one-dimensional algorithm reduces to the BSK identity, which
was applied previously to smoothing problems for continuous-time stationary random processes by
Kailath. However, the algorithms are non-trivial discrete and two-dimensional generalizations of the
BSK identity. Since both data and numerical con.putation are inherently discrete in nature, these

algorithms constitute a significant step in the practical application of these smoothing ideas.
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FIGURE HEADING

1. The polar iaster on which the two-dimensional random field is defined with2V = 8.
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Flgure 1: 2-D polar raster with

0 <= radius <= 5;

] <= angular part <= 8
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Abstract

Recently, fast algorithms have been developed for computing the optimal linear least-squares
prediction filters for non-stationary random processes (fields) whose covariances have (block)
Toeplitz-plus-Hankel form. If the covariance of the random process (field) must be estimated
from the data itself. we have the following problem: Given a data covariance matrix, computed
from the available data, find the Toeplitz-plus-Hankel matrix closest to this matrix in some
sense. This paper gives two procedures for computing the Toeplitz-plus-Hankel matrix that
minimizes the Hilbert-Schmidt norm of the difference between the two matrices. The first ap-
proach projects the data covariance matrix onto the subspace of Toeplitz-plus-Hankel matrices,
for which basis functions can be computed using a Gram-Schmidt orthonormalization. The sec-
ond approach projects onto the subspace of symmetric Toeplitz plus skew-persymmetric Hankel
matrices, resulting in a much simpler algorithm. The extension to block Toeplitz-plus-Hankel
data covariance matrix approximation is also addressed.




I INTRODUCTION

Some fast algorithms have recently been developed for computing the optimal linear least-
squares prediction filters for non-stationary random processes (fields) whose covariances have (block)
Toeplitz-plus-Hankel form [1, 2, 3]. Often the covariance function is not given explicitly, but must
be estimated from the data itself. To utilize these fast algorithms, the estimated covariance function
must have Toeplitz-plus-Hankel structure. The problem can be posed: Given a data covariance
matrix, computed from a data sequence, find a Toeplitz-plus-Hankel matrix that is closest to the
data matrix in some sense.

Several common random processes (fields) have (block) Toeplitz-plus-Hankel covariance func-

tions. For example, the first-order Gauss-Markov process
In=aTpny+w, ,n>1, 29=0, |a| <1, (1)
where w,, is discrete white noise with variance ¢?, has the Toeplitz-plus-Hankel covariance function

(ali-jl _ ali+il)’ i,j>0. (

o

G o?
Ix‘(z.])éE[z,—:rj]z T

The two-dimensional circularly symmetric Markovian random field on a polar raster
M
T N=aY Tigntwin, 21 ISNSM, zon =0, [af <1, (3)
n=1
where (i,QW%), 1 £ N £ M are polar coordinates on the polar raster and w; y is two-dimensional
white noise with variance %;—, also has the Toeplitz-plus-Hankel covariance (2). Also, in image

processing a two-dimensional isotropic random field is often modelled [4] as having a covariance

function

8 g oe o Moo 452 gicos(an(Ny - Naj/M)
E[I(i.i’x%)r(j.?w%)] = I\(vaW'M';], 2W-A—l) =p 1—-Naj

= p%([(i+j)’+(i—j)’}-{(iﬂ')’-(f-J)’lcoa(h(Nx-Nz)/M))

~1+ %([(z‘ + 307+ (= 3)°) = [(i + 5)* = (i = j)*|cos(2m(Ny = N2)/N))Inp (+4)




if p = 1, which has a block Toeplitz-plus-Hankel structure. Clearly, for these and similar randomn
processes (fields), a Toeplitz-plus-Hankel structured covariance estimate will be much more accurate
than a Toeplitz estimate.

For the special case of a wide-sense stationary random process, the estimated covariance matrix
is symmetric Toeplitz. The matrix minimizing the Hilbert-Schmidt norm of the difference between
this matrix and the data covariance matrix is found by averaging the diagonals of the data covariance
matrix, replacing each element being averaged by the average [5]. This is the result of projecting the
data covariance matrix on the vector space of all symmetric Toeplitz matrices. where the projection
is defined using the Hilbert-Schmidt inner product.

In this paper we extend this approach to the more general case of Toeplitz-plus-Hankel matrices,
following which the algorithms of [1, 2, 3] may be applied. Since the subspace of symmetric
Toeplitz matrices is a subset of the subspace of symmetric Toeplitz-plus-Hankel matrices, the
errors (in the Hilbert-Schmidt norm sense) will always be smaller than the error using only the
Toeplitz approximation. Unfortunately. the method is more complicated than simply averaging
along diagonals as in Toeplitz approximation. The basis elements of the subspace need to be
computed using a Gram-Schmidt orthogonalization. and there seems to be no simple closed-form
expression for an arbitrary element. However. if we restrict ourselves to the subspace of symmetric
Toeplitz plus skew-persymmetric Hankel matrices, the optimal approximation can be easily derived
by simply averaging along diagonals and antidiagonals. Both methods are developed in this paper.
The extension to approximation for block data covariance matrices is also included. We do not
specifically address other constraints such as positive definiteness, although such constraints can
be incorporated into one of the methods of Section IV, if needed.

This paper is organized as follows. In Section II, we specify the problem, the criterion used.
and the approach employed. In Section III, the optimal Toeplitz-plus-Hankel approximation using

basis elements derived from a Gram-Schmidt orthogonalization is derived. In Section IV. the




optimal symmetric Toeplitz plus skew-persymmetric Hankel approximation using averaging along
the diagonals and antidiagonals is derived. Some examples are also given to demonstrate the
procedures. In Section V, the results are extended to block data covariance matrix approximation.

Section VI concludes with a summary.

II PROBLEM FORMULATION

A. Hilbert-Schmidt Norm
For any two square real n X n matrices A and B, the Hilbert-Schmidt inner product and norm

are defined as

(81}

< A,B>2 Trace[ABT] ; [JA?8<A4,4>=3 Y d}, (

=1 71=1

The problem we will deal with can be posed as follows: Given a data covariance matrix R, find the
Toeplitz-plus-Hankel matrix R such that ||R — R is minimized.
The solution to this problem can be easily derived by projecting R onto the subspace of Toeplitz-

plus-Hankel matrices. A set of matrices spanning this subspace is

t ... ... 0 01 ... 0 0 0 ... 0 0 ... ... 0
1 o 0o 1 0 . oo

, N A IR . (6)
: A R | . oo .0
0 .. ... 1 0 ... 0 © 0 ... 1 0 1 ... ... 0
o ... ... 1 (o .. 1 o l’o e ... D o ... 0 ©
R B R R A

Ll + ]ty . ) (T)
B R 1 Lo I B Do S
1 ... ... 0 o ... ... 0 o 1 ... 0 o 0o ... 1

where the 2n — 1 basis function in (6) span the Toeplitz matrices, and the 2n — 1 matrices in (7)
span the Hankel matrices.

B. Projection Approach

If w » are given a set of orthogonal matrices {Q;}~_,, then the minimum distance (norm) between

a matrix R and the matrix R in the subspace spanned by {Q;}%_, is equal to the distance between

*he matrix R and its projection on this subspace, i.e., if ||R — R|| is minimum, then

x
R_§<Q.‘,Qi>Q' ()




Consider the special case where the {Q,}2! are the matrices in (6). Then, since the {Q,}

2n—-1
=1

span the subspace of Toeplitz matrices and are orthogonal in the inner product (5), the optimal
Toeplitz approximation for any matrix is to project the matrix on this subspace, and this leads
to averaging along diagonals [5]. If we extend the basis {Q;} to include basis elements for Hankel
matrices as well, the error metric |R — R|| will clearly be less than the error for Toeplitz-only
approximation. Let Ry be the optimal Toeplitz matrix approximation to R, and let Ry be the

optimal Toeplitz-plus-Hankel approximation to R. Then the improvement in the error metric is

IR — Rrull* = |IR - Rl - || Rrll® (9)

where Ry is the projection of R on the extension of the basis {Qi}227! toinclude Hankel matrices.

We now discuss this basis extension.

IIT OPTIMAL TOEPLITZ-PLUS-HANKEL
APPROXIMATION

A. Gram-Schmidt Orthogonalization

Unfortunately, while the matrices in (6) are orthogonal, and those in (7) are orthogonal. the
union of (6) and (7) are not orthogonal in the sense of Hilbert-Schmidt norm defined in (5). So while
(6) and (7) span the subspace of Toeplitz-plus-Hankel matrices, they are not an orthogonal basis.
Hence the projection of R can not be computed by averaging along the diagonals and antidiagonals.

To use the projection method. the matrices in (7) must be Gram-Schmidt orthogonalized.

2n-1
=1

extending the orthogonal basis in (6). If we represent the matrices in (6) and (7) as {Q,} and

{Q:}!25% respectively, then the new orthogonal basis functions Q/ can be recursively computed by
Q! =Q fori=1,...,2n -1 (10)

2n~-1 t—-1 [
<Qi’Qk> <QHQ > .
%=0- 2 G 05% Lg% Pristmeadn-z
=1 ’ ’

1=2n

B. Solution Procedures




Given a data covariance matrix R, the desired Toeplitz-plus-Hankel approximation R can be
computed as follows:
1. Adjoin the set of 2n — 1 Toeplitz orthogonal basis elements in (6) to some additional Hankel
orthogonal basis elements computed using the Gram-Schmidt procedure of (10)-(11). This
yields a complete orthogonal basis, say {Q;,Q2,...,Q4n~4}. (It is shown in Appendix A that

there are 4n ~ 4 orthogonal matrices in this subspace.)

2. Compute R using (8), with k¥ = 4n — 4. The projections on the Toeplitz matrices are found by
averaging along diagonals. The projections on the Hankel basis elements are found by taking

linear combinations of the element of K as follows:

3. To compute < R,Q; > for the Hankel basis elements 2n < i < 4n - 4, regard ¢, as a stencil.
Overlay R with ), and multiply each element of R by the element of Q; directly over it. Note

that for each @; at least half of the elements are zero.

8
7
11

The optimal Toeplitz-plus-Hankel approximation R can be computed as

C. Example

LetRz[

CN-3
PR

1 0 o0 01 0 0 0 0
= 6+ 1411 347 2+4
R=_+L_ 01 0 +_t_ 0 0 1 +_+_ 1 0 O
3 0 0 1 2 0 0 0 2 01 0
0 0 1 0 0 0] -033 0 0
6(~0.3 0.67) + 11(~0.33
+8| 0 0 o0{+6]0 o o 48033+ 106+ 11 ) 0 067 0
0 0 O 1 0 0| 0.67 0 0 -033

0.5

+3(o.5)—7(0.5)+2(o.s)—4(o.5)( 0 05 0 , 60.5) = 110.5) 065 o 0
1 | ¢ -05 o




The Hilbert-Schmidt norm of the error for this Toeplitz-plus-Hankel approximation is equal to
1. For Toeplitz-only approximation, the error norm is 7.75. The reduction from ||R — R7|| =7.75
to ||[R— Rry|| = 1is due to |[Ry|| = 7.68 in (9). Note that the elements of R are very close to those
of R. This is not surprising, since for this example n = 3, and there are 4n — 4 = 8 basis functions.

only one shy of number of the degrees of freedom required to completely specify an arbitrary 3 x 3

matrix.

IV. OPTIMAL SYMMETRIC TOEPLITZ PLUS
SKEW-PERSYMMETRIC HANKEL APPROXIMATION

The major computational complexity of the above method lies in the Gram-Schmidt orthogonaliza-
tion procedure. We now show that if we restrict ourselves to a specific class of Toeplitz-plus-Hankel
matrices, we obtain a much simpler algorithm which involves simply averaging along diagonals and
antidiagonals of the data covariance matrix. This is done in two parts: First, we use a matrix iden-
tity to transform this special case of the Toeplitz-plus-Hankel approximation into the more familar
Hermitian Toeplitz approximation problem. Second, we show that this problem is equivalent to
averaging along diagonals and antidiagonals.

A. Transformation to Hermitian Toeplitz Approximation

For simplicity, we only consider the case where n is even. Define [, as the n X n identity matrix.
and .J, as the n x n exchange matrix with ones on the main antidiagonal . It has been shown in

[6] that for any n x n Hermitian Toeplitz matrix HT,

(1-3)Iz (1+])J2 (14 )2 (1—]').1;1

(':% ; (/“=U”=% (12)
(1+7)2 (1-j)e (1-7)Jg (14 )
will transform HT into a sum of real Toeplitz and Hankel matrices :
HT = U(HT)UH = T (Toeplitz matrix) + H (Hankel matrix) (13)

where T = Re[HT] and H = Im[HT)]-J,. Since HT is a Hermitian Toeplitz matrix. T is a




svmmetric Toeplitz matrix and H is a skew-persymmetric Hankel matrix with all zero elements o
the main antidiagonal.

Since our concern is to obtain the optimal Toeplite-plus-Hankel approximation. we will reverse
the above procedure. More specifically. given any data covariance matrix B, we want to find the
optimal Toeplitz-plus-Hankel approximation R. where the Toeplitz and Hankel matrices have the

same structure as those of (13). Then
min||R - R|| = min |[UF(R - R)U|| = min [UP RU - HT) (14)
R R HT

where HT 2 UM RU is a Hermitian Toeplitz matrix. and we have used the fact that unitary
transformation is a one-to-one mapping that does not change the Hilbert-Schmidt norm.

We have thus transformed the problem from optimal Toeplitz-plus-Hankel approximation to
optimal Hermitian Toeplitz approximation. which can be easily solved [7]. More specifically. given

a n x n matrix C = [c,;]. its optimal Hermitian Toeplitz approximation C can be computed as

i 1 n i 1 n-k . . i
¢y = ;Eckk; Cifaak) = m Z(cm(m+k) + Clmpkym ) V2= 1o, nk=1..... n—1 (i

m=1

where + denotes complex conjugate and ¢;; = ¢;,. Atter the approximation (Toeplitzation). the

resulting Toeplitz-plus-Hankel approximation is
UHTUH =T + H (L6

The overall procedure to find the optimal symmetric Toeplitz plus skew-persymmetric Hankel
matrix R (Toeplitz-plus-Hankelization) to the data covariance matrix R can be summarized as
follows:

Given the data covariance matrix R :

1. Perform forward transformation C = UF RU;

2. Perform Hermitian Toeplitzation of C — C using (15);

3. Perform inverse transformation R = UCUH




B. Example

Let K =

5+ 1.5

; rH [ 24 2.5

(1) UPRU = 354

3.5+ 3

{t1) Hermitian Toeplitzation HT =

375 3 255 35
. ‘H o 283 275 283 2.75

(W) CCHTIUT™ = 1 55 s a5 o83 | *
35 275 2.83 3.75

2 2 1 5
1 1 3 8
1 2 4 3
2 3 6 8 ]
4= 2-2 35-3y
254+05) 25-1.5; 35—
25+ 1.5 25~05; 2-25;
2+ 27 4+ 5— 15y
3.75 283-167; 2.75-1.5; 3.5-3y
2.83 + 1.67; 3.75 283-167; 275-1.5;
275415, 2834167, 3.75 2.83-167)
3.5+ 3 275415 283+167) 3.75 B
-3 -1.5 -1.67 0 0.75 1.33 1.08
-1.5  -167 ¢! 1.67 _ 1.33 208 283
-167 0 1.67 1.5 - 1.08 2.83 542
4] 1.67 1.5 3 3.5 4.42 4.33

Toeplitz matrix

Hankel matrix

The Hilbert-Schmidt norm of the error for this Toeplitz-plus-Hankel approximation 1s equal to

1.6. For Toeplitz-only approximation, the error norm is 8.05. The main reason for using these trans-

formations is that the Hermitian Toeplitzation problem can be easily solved by simply averaging

the elements along diagonals. However. to do this, we r2cd four complex matrix multiplications for

the forward and inverse transformations. In the next section we show that this procedure reduces

to simpie averaging operations along the diagonals and antidiagonals.

C. Modified Projection Method

Consider the following (2n — 1) n X n matrices:

1 0 0o 1 0 0
I 1 o
| f 1
0 1 0 10 1

-1
(1)

We now show that the above matrices are mutually orthogonal in the inner product (5). and

also span a subspace in which every element can be represented as the sum of a symmetric Toeplitz

matrix and a skew-persymmetric Hankel matrix.




Theorem 1 The 2n — | matrices in (17) are mutually orthogonal, and hence form a set of bases

functions for a subspace.

Proof: see Appendix B.

Theorem 2 4 matriz can be represented as the sum of a symmetric Toeplit: matrir and u skeu-
persymmetric Hankel matriz if and only if it lies in the subspace spanned by the basis functions
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Proof: see Appendix (.
From the above theorems. the optimal approximation R of any matrix R by the sum of «

svmmetric Toeplitz matrix and a skew-persymmetric Hankel matrix can be computed as

o ’§<R.T.> i<RH>

L N < H,.H, >

H IS
—0<T“T‘> i=1

averaging along diagonals averaging along antidiagonals

Both the modified projection method and the transformation method compute the projection
onto the subspace of svmmetric Toeplitz plus skew-persvmmetric Hankel matrices. as shown by
i 14). Since this subspace is convex. the projection is unique. Hence both methods are equivalent.
This can also be shown by going through the transformation method algebraically. and showing

that the result is the modified projection method.

D. Example
2 02 1 5
S 6
Consider the same R = i ' Z 3
2 3 6 8
1 0 0 0 01 0 0 00 1 0
joiritat8lo 1 o0 0 24347414246 | 1 0 1 0 1+46+1+431 0 0 0 1
= : 00 1 0 6 01 0 1 : 1 0 0 o
0 0 0 1 00 1 0 01 0 0
0 0 0 1 o 0 1 o0 01 0 o
54210 0 0 0| 1#l+1-6-4-3f0 1 0 -1 241-3-611 0 0o 0
+ 0 0 0 O P 1 o -1 o (7% 3 00 0 -1
t 0 0 0 0 -1 0 o 0 0 -1 ¢




1 6 0 O 075 133 108 35
2-810 0 0o O | | 133 208 283 442
*>"lo oo o =] 108 283 542 4.33
0 0 0 -1 3.5 442 433 6.75

This example verifies that both the transformation method and the modified projection method
produce the same results. However, the latter method only requires averaging along diagonals and
antidiagonals, which is much easier than the matrix multiplications.

Incorporation of additional constraints such as rank constraint and positive definiteness has
been studied in the Hermitian Toeplitz case {8]. These additional constraints can easily be incor-
porated into the Toeplitz-plus-Hankel case in transformation method, since they are preserved by
the transformation (13). This is why the transformation method was presented separately.

vV OPTIMAL SYMMETRIC TOEPLITZ BLOCK-TOEPLITZ

PLUS SKEW-PERSYMMETRIC HANKEL
BLOCK-HANKEL APPROXIMATION

Block data covariance matrices occur in many multichannel and multidimensional problems [9]. To
ntilize the fast algorithm developed in [3] for computing the optimal prediction filters, we need to
find an optimal block Toeplitz-plus-Hankel approximation to a block data covariance matrix.

A. Multichannel Generalization of Previous Results

We focus on the symmetric Toeplitz block-Tueplitz plus skew-persymmetric Hankel block-
Hankel case with n p x p blocks. where n is even. If a matrix R has such structure, then it
can be represented by
[ ] [ - _—

1?0 ~(n—-1) R_(n__‘)J . RoJ

=

R = Y : + : RoJ

Kooy ... Ro J RoJ R,HJJ

- -
>

svmmetric Toeplitz glock-Toeplitz matrix skew-persymmetric Hax&el block-Hankel matrix
(19)

10




where R; = I_Zzi,fi,‘ = -1?2,-, and both R, and R; are p x p Toeplitz matrices for —(n — 1) </ <
n — 1. For this type of matrix, we can extend the unitary transform (13) from [6) to the following ®

multichannel case:

F (-0 .. 0 0 e U+ T
(1= 5)a (1+5)Ja 1 _ _ : ®
U=1 g _ =1 0 e A= O+ 0 (20)
2| (04l age (1-3) oge 2 0 LoG+ndh -t 0
L 0+ . 0 0 = ]
and we also have
. . ®
1| O+ D axe (1= ) nxe
U=U"= 5 z 2 (21)
(1 —J')Jn?!z (1 +J')In_;z
Then _ ;
Ry ... R_gn_y ®
-1 _ . . o
U™RU = ©  Ro : (22)
R., ... Ro
where R, = R, + jfi,‘. We have R; = Rf,v by the assumption of R = RZ,, and R, = —I_ZZi. so that ®
the block matrix resulting from the transformation is a block Hermitian Toeplitz matrix.
The procedures for computing the optimal symmetric Toeplitz block-Toeplitz plus skew-persymmetric
®
Hankel block-Hankel matrix are the same as before, except now all the matrices become block ma-
trices.
To avoid the matrix multiplications, the projection method is applicable, with some modifi- °
cations of the basis functions. We can represent the p x p matrices in (6) and (7) respectively
as
_ o | . . )
(Tiljk = 6k—j~i i (Hiljk = bkgjo(par- » forall 1< jk<p,and - (p-1)<i<p-1 (23)
where &, = 1if i = jand §;; = 0if i # j. The n symmetric Toeplitz matrices and the n — 1
skew-persymmetric Hankel matrices in (17) can then be respectively represented as ®
[TO]l,] = 61'—1 | ITI]i,] = 62—]-—( + 61—1—1- 1 S 11] S n, [ = 19' cey 1 (24)
11
®

_




[
[

(Hili; = bigym(nai-t) = bigyminr4n, 1< j<m, I=1,....n-1 (

Then the basis functions for the subspace of symmetric Toeplitz block-Toeplitz matrices are
TooTo; Too(Ti+T-y); T,0T; forl=1,...,p-1;i=1,...,n=1; j=~(p=1),...,p—1 (26)
and the basis functions for the skew-persymmetric Hankel block-Hankel matrices are
(J-To)C(H -H_p); Hi0H; forl=1,...,p-1;i=1,...,n=1;j==(p—1),...,p—1 (27)

where © is the modified outer product operation. defined as A & B a {am B} if n > m, and
{am (JBJ)} if n < m, where ap, ,, is the (m,n)-th element of matrix A. Since all the elements in
T.(T,) and H,‘(T,‘) are either 0 or 1, the outer product is a simple operation in this special case. These
two sets of matrices are easily verified to be orthogonal by following the same steps used in Theorem
1. The resulting approximation for a symmetric Toeplitz block-Toeplitz plus skew-persymmetric
Hankel block-Hankel matrix is equivalent to projecting this block matrix on the subspace spanned
by the basis functions in (26) and (27), which leads to averaging the diagonal and antidiagonal

blocks. and then the diagonals and antidiagonals of each block.

B. Example
5 2 4 9 3 1
8 4 2 7 6 12
|19 3 6 2 4
Assume R = 1 2 3 4 2 8
2 3 14 6 5 2
4 7 3 5 6 15

Then, after forward transformation, block Hermitian Toeplitzation, and inverse transformation (or

using the projection method directly), we obtain the optimal approximation R =

6 . -45 5375 425 6 2.5 -5 05 -2 075 -25 0
4.5 6 475 5375 45 6 05 -05 075 -175 0 2.5
5375 475 6 45 5375 4.25 -2 075 -2 0 1.75  -0.75

425 5375 45 6 475 5375 | Y] ors -1 o 2 -075 2
6 45 5375 475 6 4.5 -25 0 175 —0.75 05  -0.5
2.5 6 425 5375 45 6 0 25  -0.75 2 ~05 5

The fast algorithm of [3] was designed for linear prediction on a polar raster. Since covariance

functions on a polar raster are periodic in the angular variables, the associated covariance matrices

12




will have circulant blocks. The basis (26)-(27) should be modified to

T; 2 To; Ti O (Tj + T-(p—yy) fori=0,....n—1; j=1..... p—1 (28)
for the Toeplitz block-circulant matrices and
Hio(J -To); HiO(H;+ H_(p_;)) fori=1,...,n-1;j=1...,p-1 (29)

for the Hankel block-circulant matrices. These basis functions are easily shown to be orthogonal.

so the projection on this basis can again be found by averaging along diagonals and antidiagonals.

V1l CONCLUSION

In this paper, the well-known problem of "Toeplitzation™ of a data covariance matrix has
been extended to Toeplitz-plus-Hankel approximation of matrices. The general solution can be
computed by projecting the given data covariance matrix on the space of Toeplitz-plus-Hankel
matrices. Although the basis functions for this subspace can be recursively generated, as the
size of the matrix grows large, the Gram-Schmidt orthogonalization requires much computation.
To obtain a simpler algorithm, we can restrict ourselves to the subspace of symmetric Toeplitz
plus skew-persymmetric Hankel matrices, for which the optimal approximation can be efficiently
computed by averaging along diagonals and antidiagonals. We also show that the same result can
be achieved by a unitary transformation along with Hermitian Toeplitzation; the latter algorithm
permits additional constraints such as rank constraints and positive definiteness.

For the multichannel and multidimensional problems, approximation for a block data covariance
matrix is also considered. The optimal symmetric Toeplitz block-Toeplitz plus skew-persymmetric
Hankel block-Hankel matrix can be derived either by using the unitary transformation along with

block Hermitian Toeplitzation, or the more efficient projection method.
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APPENDIX A
Prove that there are only 4n — 4 matrices left in (6) and (7) after the Gram-Schmidt orthoy-
onalization.
Since the matrices in (6) and (7) span the space of Toeplitz-plus-Hankel matrices, the number
of orthogonal matrices in this subspace is equal to that of the linearly independent matrices in (6)
and (7).

We use the same notation as in (23) for T; and H;, with the replacement of p by n. Since

1

{’I_’i}:_l(n_l) is a set of linearly independent (also orthogonal) matrices, we adjoin {'.l_",}:‘z'_(n_”

with the elements in {H; ?=-—l(n—l) in the following order : Ho, Hy,H_,,... ,fln_l,ﬁ__(zn_l). If the
newly added element is linearly dependent on the previous matrices, then we remove it. So the
number of matrices remaining form a set of linearly independent matrices.

i a matrix is linearly dependent with a set of matrices, then we must be able to find a sequence
of lines such that each non-zero element in these dependent matrices is crossed by these lines at
least twice. Note that the non-zero elements in matrices of (6) and (7) are some specific lines in
either NE-SW or NW-SE directions. It is easy to check that if the index j is even (odd), then for
the above condition to hold the elements ]_{i(n_l) (Ei(n—Q)) are always required.

The only other possibilities are E_(n_z) and H,_,. If n is even, we have

S H=> T: YH= T (30)
i even ; odd Vi 'z
Reordering the terms, we get
H o= 3 Ti- > B Ay=X2T- 3 A (31)
i odd i eVen if~(n-2) Vi i#(n-1)
which means that I-{_(n_z) and ﬁ_(n_l) are linearly dependent on the other matrices. If n is odd.
simply interchange "even” and "odd” in the above argument. Thelzfore, there are 2(2n — 1) - 2 =

4n — 4 linearly independent matrices in (6) and (7). ]

APPENDIX B
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Proof of Theorem 1
We use the same notation as in (24) and (25) for T; and H;. It is easy to verify that < T,,,. T} >=
0 and < Hp, H; >= 0 in the sense of (5) if m # [ (see [5]). Therefore, we only need to show that

T,, and H; are mutually orthogonal. From (24) and (25), we have ( m # 0)

< T, H >= Trace TTH{ = Z Z (T )i k[ Hilk s

1=1 k=1

= [ickom + bkcicomlBktiz(n1-1) = Sktic(nr1+40)]

=1 k=1
n n

= Z t—k— m6k+1 (n+]+1)+61 k-~ m6k+x—(n+l l)"'ék i— m6k+x (n+l+l)+6k - m6k+z (n+1=1)

=1 k=1 v
' Point A Pamt B Pamt C Pomt D

(32)
So the solution of {32) can then be determined by the intersections of these four straight lines, i.e..
i-k=m,k—t=m,k+i=n+1+l,and k+i=n+1-1, as shown in Figure 1. If m # 0,
by symmetry these four lines either do not intersect at all (A = B = C = D = 0), or have four
intersections, for which A = B = C = D = 1. In both cases, (32) is equal to zero. If m = 0, then
there are always two intersections between thelines k+:i=n+ 1+l k+i=n+1-1[ and: = k.
and the result is still equal to zero. Therefore. T,, and H; are mutually orthogonal, and these 2n -1
matrices form a set of basis functions. L
APPENDIX C

Proof of Theorem 2
(a) "If” part: Any vector in this subspace can be represented as 3 . Va.T: + SitelH, It
is obvious that the first sum is a symmetric Toeplitz matrix, and the second sum is a skew-
persymmetric Hankel matrix. (b) "Only if” part: If a matrix C can be represented as the sum of
symmetric Toeplitz matrix T and skew-persymmetric Hankel matrix H, then C can be represented
as C = Y0, [T)iTioy + :‘;11[}-1]1(,,_,-)1{.-. Hence this matrix lies in the space spanned by the basis

functions of (17). ]

15




References

[
(4

3]

(9]

A L hagie, New Analogues of Spie stigorithni, for Arburary Toeplitz-plus- Hankel Matrices.

to appear in IEEE Trans. SP, Nov. 1991.

W.-H. Fang, A.E. Yagle, Discrete Fast Algorithms for Two-Dimensional Linear Prediction on
a Polar Raster, Proc. Int’l. Conf. on Acoust., Speech, Sig. Proc., Albuquerque, NM, April

1990, pp. 2017-2020.

W.-H. Fang, A.E. Yagle, Discrete Fust Algorithms for Two-Dimensional Linear Prediction on

a Polar Raster, submitted to IEEE Trans. SP, Nov. 1989.

A K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ,

1989.

H. Wang, G. Wakefield, Signal-Subspace Approrimation for Line Spectrum Estimation. Proc.

Int’l. Conf. on Acoust., Speech, Sig. Proc., Dallas, TX, April 1987, pp. 2054-2057.

F. Noor. S. D. Morgera A Hermitian Toeplitz Matriz is Unitarily Similar to a Real Toeplit:-

plus-Hankel Matriz, preprint, Dept. of Elec. Engin., McGill University, Montreal, P.Q. Canada.

H. Wang, Eigenstructure-Based Performance Analysis and Toeplit: Approzimation for

Direction-of-Arrival Estimation . Ph.D. Thesis. Dept. of EECS, University of Michigan. Ann

Arbor, MI, 1990.

J. A. Cadzow, Signal Enhancement-A Composite Property Mapping Algorithm, IEEE Trans.

ASSP, vol. ASSP-36, no.1, pp. 49-62, Jan. 1988

S. M. Kay, Modern Spectral Estimation, Prentice-Hall, Englewood Cliffs, NJ, 1988.

16




FIGURE HEADING

1. rigure t : lheintersectionsofit—k=m, k—i=m. k+1=n+1+l andk+i=n+1-1

17




j+k=n+1+] 1-k=m

1+k=n+1-]

(1,n)

Figure 1:

18




APPENDIX G
W.-H. Fang and A.E. Yagle, “T'wo-Dimensional Linear Prediction and Spectral Esti-

mation on a Polar Raster,” submitted to IEEE Trans. Signal Processing.




Two-Dimensional Linear Prediction and Spectral Estimation on a
Polar Raster

Wen-Hsien Fang and Andrew E. Yagle
Dept. of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122

June 1991

Abstract

A zero-mean homogeneous random field is defined on a discrete polar raster. Given sample
values inside a disk of finite radius, we wish to estimate the field’s power spectral density using
linear predi-tinn Issues arising here include estimation of covariance lags, and extendibility of a
finite set of lag estimates int~ a positive semi-definite covariance extension (required for a meaningful
spectral density). We give a generalized autocorrelation procedure that guarantees positive semi-
definite covariance estimates. It first interpolates the datc using Gaussians, computes its Radon
transform, and applies familiar one-dimensional techniques to each slice. Some numerical exampies
are provided to justify the validity of the proposed procedure. We also propoe~ a correlation
matching covariance extension procedure that uses the Radon transform to extena o given set of
covariance lags to the entire plane, when this is possible, and discuss circumstances for which this
1s impossible.




I INTRODUCTION

In many appiications, such as tomographic imaging problems solved by filtered back-projection [1].
and spotlight synthetic aperture radar [2], data are collected on a polar raster of points. rather than
on a rectangular lattice. To process such data, e.g. remove undesired frequency components; we need
to estimate the power spectral density for data defined on a polar raster.

The obvious approach of simply estimating the 1-D power spectral density independentiy along
each slice will give an incorrect answer. since the 2-D Fourier transform on a polar raster is not given
by the 1-D Fourier transform along each slice. One approach, the 2-D periodogram, is to interpolate
the data onto a rectangular lattice, and then take the 2-D Fourier transform of the resampled values.
We note here that for a rectangular raster, 1-D spectral estimation techniques have been applied, first
by columns, then by rows, in some “separable” 2-D spectral estimators [3, 4]. While these separable
estimators do compute the 2-D Fourier transform correctly, they neglect correlation between rows and
columns.

A major problem with the 2-D periodogram is the poor resoiution of spectral estimates based on
a small amount of data [5]. This is due to truncation of the covariance lags, since only a finite amount
of data samples is available. To overcome this difficulty in 1-D, parametric modeling is used to extend
the finite set of covariance lags. Linear prediction (AR modeling) is the most common approach due
to its simplicity and high-resolution spectral estimates. New contributions of this paper include the
following:

1. An "autocorrelation” 2-D spectrum estimation procedure which uses the Radon transform to
transform-the 2-D problem into an uncorrelated set of 1-D spectrum estimation problems. Itis an
autocorrelation method in that all unknown values are windowed to zero, as in the autocorrelation
method for 1-D linear prediction, for computing the Radon transform. It differs from a previous

Radon-based 2-D spectrum estimation procedure [6} in the following three ways:

(a) The Radon transform is computed in a different manner that ensures a non-negative esti-




mate of power spectral density;

(b) The use of 1-D linear prediction to obtain finer-resolution 1-D spectrum esumates along
each 2-D slice:
(¢) Discussion of the effects of the 1-D covariance extension along each slice on the 2-D covari-

ance (viz. correlation matching holds in the Radon transform domain, but not in the 2-D

domain);

2. A new 2-D covariance extension procedure that extends a set of 2-D covariance lags defined in
a finite disk to the entire plane, when this is possible. Unlike the first procedure. this procedure

has the correlation matching property of preserving the given covariance lags in the 2-D domain:

3. A discussion of various interpolating functions used to compute the discrete Radon transform,

and implications of their use for 2-D spectrum estimation.

A. Review of 2-D Linear Prediction on a Rectangular Raster

Many aspects of 1-D linear prediction have been shown to generalize to the 2-D case defined on
a rectangular raster [7]. For example. stability and minimum phase prcperties are still related to

reflection coefficients [7]. However, two vital aspects do not generalize to the 2-D case:

1. Causality. which has a clear definition in the 1-D case, has been defined in at least two different
ways on a 2-D rectan; r raster. Asymmetric half-plane causality [7] splits the 2-D raster into
“past” and “future” half-planes; the 2-D AR model has support in the “past”. Quarter-plane
causality [8) means that the 2-D autoregressive (AR) model has support in a quarter-plane.
e.g. to th;z “southwest” of the present point. Since quarter-plane causality is a special case of

asymmetric half-plane causality, we consider only the latter in the sequel.

2. An essential feature of 1-D linear prediction is covariance eztendibility: Given a finite positive

semi-definite (psd) set of covariance lag estimates, it is always possible to extend this set into an




infinite psd set of covariance lags. This is important since a non-psd set of covariance lags will
lead to negative values in the estimated power spectral density. However, this property does not

extend to the 2-D case on a rectangular raster.

For asymmetric half-plane causality, the region of support for the 2-D AR model is i..inite, su that
truncation is clearly necessary. This truncation is the cause of much of the difficulty in 2-D linear
prediction; it results in a discontinuous region of support, and even in the 1-D case a discontinuous
region of support creates nroblems. In ([7], p. 59) a 1-D example with discontinuous support results
in a non-minimum phase AR filter that does not sati>fy the correlation-matching propertv. Indeed. a
finite set of 2-D psd covariances with discontinuous support may not even have a psd extension over
the entire plane {9].

The cause of the difficulties can be seen by examining the Yule-Walker equations for determining
the AR filter coefficients from the covariance lag estimates. These equations have block-Toeplitz form.

so that the number of covariance lag estimates exceeds the number of AR filter coefficients (see [5]. p.

495 for a specific example). This has two implications:

1. An infinite number of different covariance lag estimates can be associated with the same AR
model. Hence the correlation matching property, which guarantees that the spectral estimate

will be consistent with the finite set of lag estimates, no longer holds:

2. Covariance extension from a finite set of estimated lags requires recursion using the 2.D AR
model, over an asymmetric half-plane. Since the region of support is infinite. and only a finite
set of lags estimates are given, truncation is necessary, and this may result in a non-psd covariance

extension.

B. 2-D Linear Prediction on a Polar Raster

In this paper we address, for the first time, similar questions for a random field defined on a polar

raster. On 2 polar raster, causality is defined unambiguously in terms of increasing radius: the region




of support for an AR model at any point on a given circle is the disk inside the circle. Since this disk
is a continuous region of support, the result of [9] is inapplicable.

Indeed, we give an explicit procedure which inputs discrete sample values inside a finite disk, and
outp "ts a set of psd covariance lags. We call this covariance extension, althougi -trictly speaking we
are not extending a set of covariance lags, but creating an extended set of psd lags from a finite set
of data. In Section VI we propose another algorithm that explicitly extends a finite set of 2-D lags to
the entire plane, provided this is possible.

In this paper, we prcpose using the Radon transform to decouple the 2-D spectral estimation
problem into a set of 1-D problems. The projection-slice theorem tells us that there are two ways to
compute the 2-D Fourier transform: (1) we can either compute it directly by taking the 2-D Fourier
transform; or (2) we can take the Radon transform first, and then apply the 1-D Fourier transform
along each direction in the spectral domain. This suggests the following algorithm for 2-D spectral
estimation: (1) take the Radon transform of the data; (2) extrapolate the 1-D covariance lags in the
Radon transform domain along each direction, using 1-D linear prediction; and then (3) superposing
tle 1-D spectral estimates to form a 2-D spectral estimate, defined on a polar raster.

Note that the available data are discrete samples, but the projection-slice theorem only holds for
continuous data, so we need to find some interpolating functions to interpolate the discrete data.
Since the sampling theorem on a polar raster is very different from that on the rectangular lattice,
the interpolating functions for a band-limited signal are quite complicatea {10, 11]. In this paper. we
propose using gaussian interpolating functions to comj 1te the Radon transform of the given discrete
data. A complete discussion of the merits of gaussian vs. other interpolating function is also addressed.
It should be not;ed that our proposed “interpolating” function does not agree with the original specified
discrete data points: indeed it should more properly be termed a “defocusing” function. To make it
easier for the reader, we give “interpolating function” a definition slightly different from the usual; see

Section III.




This paper is organized as follows. Section II proposes a psd covariance extension method using
the Radon transform. Section III discusses the choice of interpolating functions to transform the
discrete data samples into continuous data. The analytically explicit procedure using the gaussian
interpolating functions is then given in Section IV. This procedure can be used to provide a high-
resolution spectral estimate for points defined on a polar raster. Some numerical examples are given
in Section V. In Section VI, we propose a 2-D psd covariance extension technique that also has the
correlation matching property, provided that a 2-D psd extension exists. Section VII concludes with

a summary.

IT 2-D LINEAR PREDICTION AND PSD COVARIANCE
EXTENSION ON A POLAR RASTER

A. Problem Formulation

The problem considered is as follows. A set of data is defined on a polar raster. We are given
discrete sample values {f(¢,m),0 < 7 < N,1 < m < M} at the points (ié,,2rm /M) on the polar
raster, as shown in Figure 1; ¢ is integer radius from the origin, é, is the radial spacing, and m is
the integer index of angular position, corresponding to an angle of 2rm/M radians. The goal is to
compute a psd set of covariance lags everywhere in the plane.

The assumption of discrete samples is required, since any numerical procedure will ultimately
require discretization. We point out here that if the data is generated from an isotropic random field
which is bandlimited in wavenumber to a disk of radius =, and M > 27N, then the discrete sampled
points {f(7,m),0 < i< N,1 < m < M} may be interpolated to give the exact value of the random
field everywhere in the disk of radius N [10].

B. The 2-D Radon Transform and Projection-Slice Theorem

In order to decouple the 2-D linear prediction problem into a set of 1-D linear prediction problems

along each slice, it is necessary to first compute the Radon transform of the data. The 2-D Radon




transform is defined as

f‘(t,o)=7z{f(z,y)}://f(x,y)a(t—zcoso-ysina)dzdy (1)

so that the Radon transform is the set of projections or line integrals of f{z.y) along all possible lines.
An important property of the Radon transform is the projection-slice theorem, which states that
the 2-D Fourier transform F(k,6) in polar coordinates of f(z,y) can be computed by taking 1-D

Fourier transforms along each slice of the Radon transform of f(z,y) so that [12]

F(k,8) = FF{f(z.y)} = Fer{f(1.6)} (

(3]
—

where F;_; denotes a 1-D Fourier transform taking ¢ into wavenumber k, and f(t,B) is computed
using (1). A discrete version of the projection-slice theorem has been used to develop a fast algorithm
for computing 2-D discrete Fourier transforms: first the discrete Radon transform is computed, and
then 1-D discrete Fourier transforms are computed along each slice of the Radon transform {13]. Since
both transforms are parallelizable, this can save computation time.

For a homogeneous random field, it may be shown that the Radon transform is a whitening trans-
form: each slice of the Radon transform of a homogeneous random field is uncorrelated with each
other slice {14]. This suggests that the 2-D linear prediction problem can be decoupled into a set
of independent 1-D linear prediction problems by Radon transforming the data. This approach was
taken in [6]; however, [6] did not consider the problems of linear prediction on a polar raster, from a

finite disk of data, correlation matching, and psd covariance extension.
C. Procedure for 2-D Covariance Eztension

Clearly computation of the Radon transform from the data will require interpolation. In the
next section, we will discuss how to choose an interpolating function to transform data from the
discrete domain into the continuous domain. At present, for convenience we assume that the data are

continuous and inside a disk of finite radius.




Since we have data only inside a disk of finite radius, we propose an “autocorrelation” method
in which the unknown data are windowed to zero for purposes of computing the Radon transform.
The Radon transform is then computed analytically. Finally, the 1-D autocorrelation form of linear
prediction is used on each slice of the Radon transform to get a set of psd covariance estimates.

The term “autocorrelation method”, in the linear prediction sense of the term, is justified due to
the following two properties of the Radon transform:

1. Let Z(t,¢) be the Radon transform of the random field z(r,8) (using polar coordinates through-

out). Note from (1) that for any T > 0 {Z(¢,¢),t > T} depends only on {z(r,8),r > T}. Hence
windowing the data to zero for ¢+ > N is equivalent to windowing its Radon transform to zero

fort > N;

2. Using (2), it is clear that

R{f(z,y) * *g(z,y)} = f(¢,0) * §(t,6)

where ** denotes 2-D convolution and * denotes 1-D convolution in t. Setting f(z.y) = z(r,6)

and g(z,y) = z(r,—8) in (2) shows that the following two methods are equivalent:

(a) Windowing the Radon transform of the data to zero, and then forming the covariance lag

estimates from these Radon transforms;

(b) Forming the covariance lag estimates directly from the windowed data (the autocorrelation

method of linear prediction), and then Radon transforming the lag estimates.

IIT COMPUTATION OF DISCRETE RADON TRANSFORM

In this section we discuss the computation of the Radon transform of a function defined on a
discrete lattice of points. We call such a transform a discrete Radon transform. The discrete Radon
transform will be used in the spectral estimation technique proposed below. To facilitate comparison

of our method with various other definitions of the discrete Radon transform, we consider first a




rectangular lattice of discrete points, and then a polar raster of discrete points (the latter is the actual

case of interest).
A. Rectangular Lattice

Consider a function f;; defined on a rectangular lattice of points (7, j), where i and j are integers
such that — M < 7,7 < M for some M. Our goal is to define and compute the discrete Radon transform
of f;; such that the following properties hold:

1. Computation of the discrete Radon transform requires as little time and storage as possible:
2. The Radon transform possesses the projection-slice property;
3. The Radon transform f(t.0) of a psd discrete 2-D function f;; is psd in ¢ for each 6.

Note that ease of invertibility of the discrete Radon transform is not an issue here, since the
projection-slice theorem states that the 2-D spectrum on a polar raster is immediately determined
from the 1-D spectra of the Radon transforms. Hence ease of computation of the forward transform.
not the inverse transform, is significant.

Our approach is to interpolate f; ; into a continuous function f(z,y), defined as

M M
fzy)= Y. Y fiela —diy-j) (3)
i=—M j=-M
where ¢(z,y) is defined here as an interpolating function. The discrete Radon transform f(t,8) of fi;
is then defined to be the same as the Radon transform of its interpolation f(z,y), which is

M M
fe0)=R{f(z, )} = 3. Y fi,R{s(z —iy—j)}

i=-M j=-M

M M

= Z Z f,-dé(t—icos0—jsin0,0) (4)

t=-M j=-M

where R{#(z,y)} = (t,0). This definition clearly possesses the projection-slice property. To follow,
we consider some common interpolating functions, for more other interpolating functions, see [15].

Some choices of interpolating function ¢(z,y), and the resulting discrete Radon transforms, are:




1. Impulses

Choosing for the interpolating function the 2-D impulse function ¢(z,y) = é(z)é(y) results in
M M
f@,0)0= 5 Y fi;6(1-icos - jsin6) (5)
i=—M j=-M
since R{é(z)o(y)} = 8(2).

For this choice of interpolating function, the discrete Radon transform is zero unless the line passes
precisely through a lattice point; hence f(t,8) is zero except for a finite set of t and 6 (excluding values
found from only a single lattice point). This makes this choice unsuitable for 2-D spectral estimation.

This is the discrete Radon transform defined by Beylkin in [16]. Note that on an infinite 2-D lattice
of integers (M — oo), the set of lines through the origin for which the discrete Radon transform is
non-zero is precisely the set of lines with rational slopes.

2. Square Pizels

A common method of computing the Radon transform of a sampled function is to assume that
fi,; represents the value of the square 1 x 1 pixel centered at coordinates (z,y) = (4,7). The Radon
transform is then computed as follows. For each line, multiply the length of the line within a pixel by
the value f;; of that pixel, and sum over all pixels through which that line passes. This method was
used in [6] to compute the Radon transform for 2-D spectral estimation.

This pixel assumption is clearly equivalent to using for the interpolating function oé(z,y) =
rect(z)rect(y), where rect(z) = 1if —1/2 < z < 1/2, and = 0 otherwise. The resulting discrete
Radon transform is then

- M M -
f(t,0) = Z Z fijo(t — icos@ — jsiné,8)

t=-M j=-M




where ([12], p. 62)

cosb+sinb8+2t  if _ ging — cosh < 2t < sinh — cos b

2sinfcosf

L. if sinf — cos@ < 2t < cos§ — sinf
cos§

#(t,0) = R{rect(z)rect(y)} = (6)
cos@sinb=2t  if c5f _sinfh < 2t < cosf + sinb

2sinfcosf

0, otherwise.

\

It is clear that this requires a considerable amount of computation, in violation of condition #1
above. It should be noted that the value of this definition of discrete Radon transform is that its inverse
Radon transform may be computed by solving a linear (but large) system of equations. However, this
is not valuable to us in the context of 2-D spectral estimation. since the 2-D spectrum can be found
from the 1-D spectrum immediately using the projection- slice property. Hence there is no reason to
make the choice of inierpotating functions implicitly made in [6]. A more serious problem is that there
is no guarantee that the resulting f(t,8) will be psd, in violation of condition #3.

3. Sinc Functions

Regarding f;; as samples of a continuous function bandlimited in radial wavenumber to [-7, 7]

(note that this may or may not actually be the case), the choice ¢(z,y) = % leads to
24y

M M

f(t,0) = Z Z fijsine(t — icos@ — jsinf) (

i=-M j=-M

~1
~—

0.5Jy(r/z2+42?)

since R{ =
24y

} = since(t).

This discrete Radon transform is easily computed, satisfying condition #1. The projection-slice
property (condition #2) is automatically satisfied. Condition #3 that f(t,()) be psd in t may not
seem at first glance to be satisfied, but if f;; is psd, and regarded as samples of a bandlimited function
sampled above the Nyquist rate, then its interpolation f(z,y) is also psd. This means that the 2-D
Fourier transform of f(z,y) is non-negative, and by the projection-slice property the 1-D Fourier
transform of f(t,8) is non-negative for each 8, so that f(t,&) is psd, as required.

f(t,0) can also be seen to be psd as follows. First, consider the j = 0 terms. These can be

interpreted as the interpolation of sampled values f;o using a discretization length Ay = cosf < 1
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(corresponding to a sampling rate above the Nyquist rate). Repeating this argument for each value
of 7, f(t,8) can be interpreted as a sum of delayed signals, each of which is bandlimited and psd.
Hence these sum must be psd. Furthermore, the projection-slice property also implies that f(t.9)
is bandlimited to [~m, =], so that it may be sampled in ¢ and standard discrete-time 1-D spectral
estimation techniques applied to it.

Note that regarding f;; as samples of a continuous function bandlimited in wavenumber to —7 <
kr,k, < m leads to the choice ¢(z,y) = sinc(z)sinc(y). The lack of radial symmetry in ¢(z.y) makes
its Radon transform é(t, ) a 6-dependent sinc function. The above argument for (7) is also applicable

to this case.
B. Polar Raster

We now consider the same problem, but on a discrete polar raster of points having radius N and
M radial slices. This is the problem of interest, since our data is given on such a discrete lattice.

The major difference between the rectangular and polar rasters is that, on a polar raster, translation
must be described in terms of polar coordinates. Hence f; ; becomes f; ,, where integer i denotes radius
and integer n denotes an angle 2rn/M radians from the horizontal (i.e., the n** radial slice). Equation

(3) for interpolating the f; ; must be modified to

N M
Fr,0) =33 finbl(r.0) = 5,270/ M)] * +¢(7, () (8)

1=0n=1

where ** denotes a 2-D convolution in polar coordinates and
8[(r,¢) = (4,27n/M)] = §(r cos { - icos(2nn/M))8(rsin { — isin(27n/M)) (9)

is a 2-D impulse.
The discrete Radon transform f(t,0) of fin is again defined to be the same as the Radon transform
of its interpolation f(r,(). Using the property that the Radon transform of a convolution is the

convolution (in t) of the Radon transforms (obvious from the projection-slice property), equation (8)
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is modified to

N M
R{ATOY =) fiaR{6U(r.C) = (i.27n/ M)} + R{8(r.()}

fe.6) =
=0 n=1
N M N M
= ZZ 8(t —icos(8 — 2xn/M)) * o(t,8) = D _ > find(t — icos(d — 2rn/M),8)
1=0n=1 =0 n=1

where R{#(r,()} = ¢(t,8) and we have used the fact that R{f(x —a)} = f(t—e-a,e) [12], where x
and a are vectors and e is a unit vector.
1. Impulses
Choosing for the interpolating function the 2-D impulse function ¢(r, () = §(r) results in
N M
f(t,0) = Z Z finb(t —icos(8 — 2xn/M)) (10)
i=0 n=1
For this choice of interpolating function, the discrete Radon transform is again zero unless the line
passes precisely through a lattice point. This happens when t = z cosf + ysin = icos(8 — 2rn/M),
le.,z = icosf and y = isia{. Again, only a finite number of lines pass through more than one lattice
point; hence this choice is unsuitable for 2-D spectral estimation.
2. Sinc Functions
The choice ¢(r,() = M_IT_(”_TJ results in
N M
f(2.6)=3"3" finsine(t — icos(d — 2mn/M)) (11)
1=0 n=1
This is a plausible choice. However, this choice of interpolating function does NOT correspond to
interpolating samples of a bandlimited function, since the sampling is performed on a polar raster. The
problem of interpolating a bandlimited function from samples on a polar raster has been considered in
[11]; however [11] required that the samples be taken at non-uniform radial distances, corresponding
to the interlaced zeros of Bessel functions of the first kind of various orders. Hence the results of {11]

are not applicable here.

3. Gaussian Functions
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The choice ¢(r,() = e~"* results in

N M
f(t’g) = z Z f,‘,nﬁe"(‘-i605(9-27rn/M))2 12

+=0 n=1
since R{e~""} = /me~t". This is easy to compute, satisfying condition #1, and the projection-slice
property (condition #2) holds automatically. However, unlike the sinc interpolating functions, a set
of psd f;. guarantees that f(t,8) will be psd in ¢, so that condition #3 is also satisfied. This is true
since: (1) the Fourier transform of & Gaussian function is also Gaussian; and (2) a Gaussian function
is always positive. We now prove that condition #3 is satisfied.

Recall that the interpolated function f(x), where x is a vector, is defined by

N M

f(x) =320 finb(x = (3,270/M)) * +(x) (13)

1=0n=1
where (2,27rn/M) is a point on the polar raster and ++ denotes a 2-D convolution. Taking the 2-D

Fourier transform of this yields

N M

F(k) =3 fine kG2 /Mg (k) (14)

i=0n=1
where k is a wavenumber vector and ®(k) = FF{#(x)}. We recognize the expression multiplying (k)
as the 2-D discrete-time Fourier transform (2DDTFT) of f; , in discrete polar coordinates; since f; , is
psd this is non-negative. If ®(k) is non-negative, F(k) is also non-negative, and by the projection-slice
property f(t,&) is psd in t. Hence conditions #1-#3 are all satisfied if: (1) ®(k) > 0; (2) both ¢(x)
and ¢3(t,0) have simple forms in polar coordinates; and (3) both ¢(x) and é)(t,H) have “reasonable”

forms that interpolate the data (this excludes impulses).
C. Choice of Interpolating Function

At one extreme we have the impulse interpolating function, and at the other extreme we have the
sinc interpolating function. The gaussian interpolating function occupies a middle gronnd. Although
there is no firm basis for choice, we have chosen the gaussian interpolating function because it occupies

the middle ground.
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Another reason to choose the gaussian interpolating function is that by varying the variance, we
can control the width of the interpolating function in both space and wavenumber. Note from (14)
that the interpolation operation plays the role of filtering, and that the resulting spectrum depends
proportionally to the spectrum of the interpolating functions.

More specifically, the Fourier transform of a gaussian function g(z,y) = e 2o is equal to
G(wy,ws) & FF{g(z,y)} = e~ (wi+v]) which means that the spectrum of the gaussian interpo-
lating function is still a gaussian function with bandwidth inversely proportional to ¢? (variance). So
if we choose a large o, the interpolating function has a slowly decaying tail and behaves like a low-pass
filter. Hence, we can get a smooth spectrum with low fluctuations. However, the high frequency
components would be highly degraded. On the other hand, if we choose a small o, the interpolating
function approaches an impulse and behaves like a high-pass filter. However, in this case the evaluation
of the Radon transform in some directions does not account for enough data points to fully reflect
the nature of the desired spectrum, therefore, large fluctuations are likely to occur. Note that due to
the bell shape of the spectrum of the gaussian interpolating function, low frequency components are
expected to be less degraded and provide better resolution. If we have a priori information about the
nature of the spectrum, we can choose a suitable o accordingly.

In view of the effect of ¢ on the resulting spectrum, in the following we propose the following
gaussian interpolating functions with different ¢ and normalization constants (¢ is a constant):

2,42

g(z.y) = T , with constant o (15)
22 2
glz,y)=e" 202 ,0 = ¢ -1 (i denotes radius of the available data) (16)
12 2
g(z.y) = e~ 3% 0 = c-' (  denotes radius of the data evaluated) (17)
L e
g(z,y) = e~ 2% o = c- (i denotes radius of the available data) (18)
V2ro

The function (15) is the most basic one. The functions (16) and (17) take into account the fact that

for data points farther away from the origin, the superposition effect using interpolation will not be
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the same if we use a constant o. If o increases proportional to the radius, the interpolating function
would decay slower as the radius increases, so that the weighting can be kept the same independent o
of the radius. The interpolating function of (18) is a normalized one in the sense that the weighting

of the available data point is normalized to 1 as in the discretization case.

®
IV HIGH-RESOLUTION SPECTRAL ESTIMATION
We now focus on the gaussian interpolating functions. and use them to derive an analvtically
explicit procedure for spectral estimations with data points defined on a polar raster. Following the ®
notations used in section III, we obtain
N M 2 N 2 2
f(m,y) = Z Z f(i’m)e—[(x—r. cos 0 )2 +(y—r, sin §,,)?]/20 (19)
where r; = 16, and 6,, = 2rm/M. Using the shifting property of the Radon transform and R,{e’(’2+y2)/2"2} =
oV2re= 127 it is straightforward to show that the exact Radon transform of (19) is
. N M e 2
f(t.0) = R{f(z,y)} = ovV2r 3 5~ f(i,m)e” (7T coslomol)"/20 (20) ®
1=0m=1
The complete procedure for estimating the power spectral density of a zero-mean homogeneous
random field given discrete data {f(i,m),0 < i < N,1 < m < M} and using the autocorrelation
o
method of linear prediction is as follows:
1. Use (20) to compute the Radon transform of the data from f(i,m), at some values of t with
equal spacing and ¢ = 27j/L,j=1...L; °
2. For each ¢, compute the autocorrelation of the Radon transform; i.e., autocorrelate the results
of (1) along each slice by (2) (x 2 (z,y))
R . . o
ro(x) = Ro{r(x)} = Re{f(x) * xf(~x)} = Re{f(x)} * Re{f(—-%)} = f(2,0) * f(t.—¢) (21)
3. For each ¢, fit a 1-D AR(p) (p may vary for different ¢) model to the projection data using
the autocorrelation estimates, so we can get a set of linear prediction coefficients, say {h(k)}, ®

corresponding to 74(j),7 =0,...,p - 1;
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4.

3.

For each ¢, use the 1-D AR(p) model to extend the covariance by [5]
p—1
re(i) = =Y h(k)re(j — k), i>p (22)
k=1

Take 1-D Fourier transforms along each slice. This is the estimated 2-D spectral density.

Some comments are in order here:

1.

(1

The “autocorrelation” assumption of windowing data to zero for : > N is required in order to

compute the Radcn transform of the data, vince even £(0, ¢) depends on {z(t.6).t > N}:

It is therefore consistent to make the same assumption in fitting the 1-D AR models to each slice

of the Radon transform;

As noted above, the Radon transform and autocorrelation operations commute, so the above

procedure can properly be termed an “autocorrelation” procedure;

The covariance function of the interpolated function (19) is

r(u.,v)é//f(x.y)f(x+u,y+v)dzdy
zJy

— Z Z Z Z[f( r, 0]_ )f( Tk, 91) . e-—[(u-}-r,cosGJ —rxcosb )2+ {v+r sind, -—rksinﬂl)z]/‘!a?] (23)
v ko

which is a Gaussian-weighted sum of the available discrete d2ta sample - the weighting depends
on the distance vector between two points. Equation (23) also provides a method to compute

the covariance for data defined on a polar raster.

A significant advantage of this procedure is that it guarantees a psd covariance extension of the
finite set of lag estimates computed from the data. 'Lhis is required to ensure a non-negative

power spectral density estimate;

. Since the correlation matching property holds for the 1-D linear prediction technique along each

slice of the Radon transform. it also must hold for the entire 2-D spectral estimate, in that
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the 2-D covariance function derived from the 2-D spectral estimate will match the estimated

covariance lags in the Radon transform domain.

V SIMULATION AND DISCUSSION

In this section we provide some examples to demonstrate the proposed spectral estimation proce-
dure. The data are assumed to be available on a polar raster (/ x M, where I is the number of points
along each direction {with radial spacing é,), and M is the number of angular partitions). A gaussian
{unction is used as the interpolating function ¢(z,y).

To compute the 2-D periodogram, we resample the interpolated data on a rectangular lattice (with
spacing 6,6, along the abscissae and ordinate, respectively), zero-pad the points along each axis from
L points to 128 points, and then take a 128 x 128 2-D discrete Fourier transform. To use the proposed
new spectral estimation algorithm, we compute the Radon transform of the interpolated data, and
then sample it on I’ x M’ polar raster, where I’ is the number of points along each direction (with
spacing 6, ), and M’ is the number of angular partitions. The proposed spectral estimation procedure
is then performed independently along each slice.

Note that in the following figures, the abscissae and ordinate denote the z and y axis for the 2-D
periodograms, and radius and angles for the proposed method, respectively. For clarity. only one
quadrant or one half of the spectrum is shown in the following figures. This is appropriate since the
proposed method generates the spectral estimate slice-by-slice. However, the figures for the proposed
method must be visually interpreted differently.

EXAMPLE 1

The algorithm of [17] was used to generate a single realization of a zero-mean isotropic random

field with power spectrum density

Si(w, wy) = 4e~0C(wi+ud)

which is a circularly symmetric spectrum as shown in Figure 2. The available data was 3 x 6 (I =
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3.M = 6) with radial spacing 6, = ,.2. We used 6, = &, = 6, = 0.1, L = 25.1' = 6. M’ = 36. and
chose t’ = interpolating function defined in (16) with ¢ = 0.151.

The resulting spectral -stimates are shown in in Figures 3 (for the 2-D periodogram) and 4 (for
the proposed method with AR(4) modeling along each slice). The estimated spectra in both figures
are similar, and close tv the true spectrum.

EXAMPLEF 2a

The algorithm of [17] was used to generate a single realization of an isotropic random field with

power spec rum density

10 if w? + w2 < (0.6457)°
Sa(wy uy) =
0 otherwise
which is plotted in Figure 5. The available data had I = 3 and M = 6 with radial spacing é, = 0.2.
We used 6, = 6, = é.» =0.1,L =31, ' = 12. M’ = 72, and the interpolating function defined in (16).
The 1esulting spectral estimates are shown in Figures 6 (2-D periodogram) and 7 {spectrum using
the proposed method). Note that the proposed procedure provides better transition performance on
the di;continuity of the original spectrum. However, the 1-D extrapolation of the 1-D covariance also
causes a slight increase of the high frequency components in Figure 7.
EXAMPLE 2b
The algorithm of {17] was used to generate a single realization of an isotropic random field with
power spectrum density So(w;,w;) (same as for Example 2a) plus a white gaussian noise field at a
SV I equal to TdB. Now ¢ = 0.3t is used in the interpolating function (16): all other parameters are
the same as in Example 2a.
The resulting spectral estimates of power spectral density are shown in Figures 8 {2-D periodogram)
and 9 (spectrum using the proposed method), respectively. No*e that the estimated spectrum in Figure

9 15 not as good as that in Figure 7. due to the additive white noise. However. it is still better than

the 2-D periodogram shown in Figure 8.
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EXAMPLE 3a
Here the random field whose power spectral density is to be estimated is the deterministic 2-D
signal

Dy(z,y) = cos(wrz + way) + cos{wiT + way)

where (wy,w,) = (0.1737,0.17), (w3, ws) = (0.127,0.2087),z = ié,cos(j0),y = ib,sin(j6),0 < 1 <
I,1<j< M,and 8 =2r/12 (M=12). This consists two closely-spaced low frequency sinusoids. The
available data has I = 12 and M = 12 with radial spacing §, = 1. We used 6, = 6, = é,» = 1,L =
31.I'" = 12, M’ = 72. and the normalized interpolating function defined in (18). o is chosen to be
0.02:, which is much smaller than the spacings of the interpolated points, so the interpolating function
is close to an impulse function. This is a reasonable choice; since if o is too large, the spectrum will
be smeared by those of the adjacent directions, which will reduce the overall resolution. An AR(3)
model is used to extrapolate the 1-D covariances in the proposed method.

The resulting spectral estimates are shown in Figures 10 (2-D periodogram) and 11 (spectrum
using the proposed method). Note that the 2-D periodogram in Figure 10 shows only one peak. so
that it fails to resolve two sinusoids. In contrast, for the proposed method in Figure 11, two peaks are
apparent and are located at (0.1757,0.1097) and (0.1177,0.2037 ), respectively, which are very close
to the true frequencies. More accurate results were achieved using more points along each direction.
Also note that the artifacts in Figure 10 are exaggerated in appearance, due to the nature of the
plotting axes. A radial, rather than rectangular, plot of axes radius r vs. angle # would reduce the
visibility of the artifacts.

EXAMPLE 3b

Here the random field whose power spectral density is to be estimated consists of the deterministic

signal from Example 3a plus a single realization of a white gaussian noise field with unit power:
Da(z.y) = cos(wrz + way) + cos(waz + way) + w(z.y)

We use the normalized interpolating function defined in (18) with ¢ = 0.02i, and AR(3) modeling
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along each slice in the Radon transform domain. All other parameters are the same as in Example 3a.
The resulting spectral estimates are shown in Figures 12 (2-D periodogram) and 13 (proposed
method). Although some spurious peaks appear in Figure 13, due to the additive white noise. the
two peaks for the sinusoidal input signals are still obviously distinguishable in Figure 13. The 2-D
periodogram in Figure 12 not only contains many spurious peaks, but also fails to resolve two sinusoids.
Use of a Bessel function as the interpolating function gave less satisfactory results; in the resulting

spectral estimate the two sinusoidal peaks are not resolved.

VI 2-D CORRELATION MATCHING ON A POLAR RASTER

A. Introduction

The above 2-D spectral estimation method may be used to estimate 2-D spectra on a polar raster,
either directly from data or from specified covariance lags. In the latter case, however, the above
method does not preserve the specified covariance lags: The inverse 2-D Fourier transform of the 2-D
power spectral density (the 2-D covariance) does not match the given covariance lags. Hence it does
not satisfy correlation matching in the 2-D plane.

In this section we propose a procedure that ertends a given set of 2-D covariance lags. specified
inside a disk of radius R, into a 2-D covariance function specified everywhere in R?, and which matches
the given 2-D covariance lags. It guarantees that the extended covariance is a 2-D psd (positive semi-
definite) function, ensuring that the power spectral density will be non-negative everywhere. Although
the procedure is applied to functions defined continuously on R?. it may also be applied to discrete
covariance lags on a polar raster by interpolation, as described above. We also discuss when such an
extension is img;ossible, and how this is manifested in the algorithm.

The problem addressed is as follows:

Covariance Ertension Problem: Given a set of covariance lags {f(r.8),r < R} for some radius R.

determine an eztension {f(r.8).r > R} of the given lags such that: (1) f(r.6) agrees with the given
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values { f(r,8),7 < R}; and (2) f(r,8) is a 2-D psd function, meaning that its 2-D Fourier transform

is real and non-negative everywhere.
B. Radon and Backprojection Transforms

To explain the procedure, and to explain why it is necessary for covariance extension, we define the
Radon transform, the backprojection transform, and note some causality and psd-preserving properties
of each transform.

Radon Transform in Polar Coordinate: Let f(x) = f(r,8) be a function defined on z € R2. Then

the Radon transform f(t,d)) of f(r,0) is

- oc 2
f(t,0) = R{f(r.8)} = /0 /0 £(r,8)6(t — 7 cos(8 — &))r db dr (24)

Note that the Radon transform is the line integral of f(r,6) along the line t = z cos ¢ + ysin @, where
z =rcosf and y = rsiné.
Backprojection Transform: Let f(z) = f(r,8) be a function defined on r € R?. Then the back-

projection transform f(t,¢>) of f(r,8)is
fito)= B0} = [ [ fr0)6(r ~ tcoste - o)dsdr
o Jo

_ /“ f(r = tcos(6 — ¢).8)d8 (25)
4]

Note that the backprojection transform is the circular mean of f(r,6) on the circle r = tcos(8 — @)
{rote that the point {r,€) coincides with the point (—r,8 + 7); this is why the integral over # varies
only from 0 to 7 rather than 27). This circle passes through the origin, has diameter ¢, and has its
center at ((t/2)cos @,(t/2)sin ¢). The backprojection transform is also half the adjoint of the Radon
transform ([12], p.134); note that (24) and (25) differ primarily in that r and t have been interchanged.

Anticausality of Radon Transform: Let f(t,¢) = R{f(r,0)}. Then for any T > 0, f(T.#) depends
only on the values {f(r.d),r > T}. This is clear since f(T,8) is the line integral of f(-) along the

line T = zcosf + ysinf, whose minimum distance from the origin is 7. It is also true that given
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{f(t,¢>),t > T}, it is possible to reconstruct {f(r.8),7 > T}; an explicit formula has been given by
Cormack [18].

This anticausality explains why the above spectral estimation proceaure does not preserve the
given covariance lags. Any given covariance lag at radius T’ depends on all values t > T of the Radon
transform of the covariance. But these values for ¢ > R have been changed from zero by the 1-D
extensions applied to f(t,6) independently for each 8. Hence the extended covariance does not match
the given covariance lag.

Causality of Backprojection Transform: Let f(t,0) = B{f(r.0)}. Then for any T > 0, f(T,0)
depends only on the values {f(r,8),7 < T}. This is clear since f(T,6) is the circular mean of f(-)
along the circle r = T cos(# — @), so that 7 < T always. Another way to see this is to note that
backprojection at the point (T, ¢) can also be viewed as the integration over all lines r = z cos§+ysin
passing through (T, ®); any such line must pass closer to the origin than T, so that any such line will
have r < T. It is also true that given {f(t,o),t < T}, it is possible to reconstruct {f(r,8).7 < T} (see
[19]).

Inverse Radon Transform by Backprojection: Let f(t,9) = R{f(r.8)}. Then we may recover

f(r.8) from f(t,) by computing
podog
f(r.8) = B(t.d>)—-(r,9)HEf(ta‘p) (26)

where H denotes the Hilbert transform H{f(t)} = f(t)* ;—: This is the well-known technique of
filtered backprojection [12]. Nute that here fit, o) is regarded as a collection of functions indexed by
o, rather than as a continuous function of polar coordinates (t, ®).

Positive Semi-Definite Properties of R and B: Let f(r,8) be a 2-D psd function. Then flt,0) =
R{f(r,8)}is a 1-D psd function in t for each ¢ by the projection-slice theorem of the Radon transform,
and 'H%f(t, @) is also a 1-D psd function in t for each ¢, since the filtering operation ’H% corresponds to
multiplication by |k| in the Fourier domain: f,_.k{'l'{-c%f(t,d))} = |k|F—x{f(t,®)}. Hence the inverse

backprojection transform B! maps 1-D psd functions to 2-D psd functions, as does the inverse Radon
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transform.
. Covariance Ertension Procedure

We propose the following procedure for extending a given set of covariance lags f(z),r € R%,|z| <
R into a function f(z),r € R? specified everywhere in R? and which agrees with the given set of
covariance lags:

1. Compute the Radon transform f(t,#) of the function f(r,8) defined by f(r,6) = f(z)if r =

|z| < R; 0if r > R. Note that f(t,¢) = 0 for t > R by anticausality of the Radon transform;

g

. Compute H-;-tf(t,qﬁ) from f(t.¢). Note that ‘H;f—tj:(t,@) # 0 for t > R due to the smearing effect

of the Hilbert transform H:

3. Replace the values of 'H%f(t,q)) for t > R with values such that Hz‘i?f(t,qﬁ) is 1-D psd in t for

each ¢. Call this new function 'Hﬁf(t,q&); note that ‘Hf;f(t,qb):?i%f(t,qb) fort < R;

4. Compute F(r,8) = B(_z,l‘g)—.(r,o){H%f(t"ﬁ)}' F(r.0) is the 2-D psd extended covariance function.

By the causality property of B, F(r,8) = f(r,8) for r < R, so that the extended covariance matches
the given covariance lags. By the psd property of B, F(r,8) is a 2-D psd function since 'H;‘l;f(t.cb) 15
a 1-D psd function in ¢ for each ¢. Hence we have successfully extended the given covariance lags into
a 2-D psd covariance function F(r,#8).

Note that the only difference between this procedure and the previous procedure is that ’Hﬁ of the
Radon transform of the given covariance lags is computed before performing the 1-D psd extensions,
instead of after. This seemingly minor change allows the use of the causality property of B, instead of
the anticausality property of R~!.

[t might seem at first glance that this constructive procedure allows any 2-D set of covariance lags
specified inside a disk of radius R to be extended into a 2-D psd covariance function. This seems
to contradict the known fact (7] that some sets of covariance lags are not extendible into a 2-D psd

covariance function. The resolution of this paradox is found by noting that it may not be possible to
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form a 1-D psd function ’H;“;f(t,tﬁ) from the H%f(t,qb) computed from the given covariance lags. For
example, if for any ¢ there is a t < R such that ’H%fa(t‘cb) > H%f(O.cD). then the 1-D psd extension
cannot be performed for that ¢, since any psd function g(¢) must have the property that g(t) < g(0).
This explains how a 2-D extension may be impossible.

Another important question is: Can all possible 2-D psd extensions of the given f(z),z € R?,|z| <
R be found from all of the possible 1-D psd extensions of the ’Hgd;f(t, ¢)? Unfortunately, the answer
is no. To see why, we now investigate briefly the nullspace of B.

D. Nullspace of Backprojection Operator

Let f(z),z € R%,|z| > R be an extension of given values f(z),|z] < R. Now compute the filtered
Radon transforms of both the given values f(z),|z] < R and the extended values f(z),|z| > R (note

the latter is a “hollow” function):
: d
Jez(t. @) = H=-R{f(2),lz] > R:0.]z] < R};

find1,6) = HAR{J (). le] < R:0.lz| > B)
Here f{ng(t,(b) is the function which is extended to create a 1-D psd in the procedure we proposed
above, and by construction, B{fert(t,w)} =0 fort < R.
We now consider the following question: Does fert(t,qb) = 0 for t < R? That is, is there a non-zero
function feﬂ(t,o) such that B{fezt(t,q,‘))} =0, i.e., does B have a non-empty nullspace?

The significance of this question is as follows. If B does NOT have a non-empty nullspace, then

fort(t,®) = 0 for t < R. Then
d ) . .
Hzn{f(x)} = ftl‘i(ts ¢) + fiﬂ!(tq (b) = fint(tv (p)vt < R

and ANY extension of given values f(z),|z| < R is associated with an extension of fmt(t._q')), so that
ALL 2-D psd extensions of the given lags are associated with 1-D psd extensions of fm(t,¢). But if

B HAS a non-empty nullspace containing some non-zero fezt(t, ), then
d - . R
Han{f(x)} = fert(t, @) + fini(t, @) # fin(t @)t < R
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so that the extended f(z)is NOT associated with 1-D extensions of f;ng(t,¢),t < R, but with 1-D
extensions of fgng(t,¢) + f;n,(t,¢),t < R. This implies that not all 2-D extensions of f(z),|z| < R can
be found from 1-D extensions of fin(t,¢),t < R.

Unfortunately, B DOES have a non-empty nullspace, so that it is not true that all 2-D psd exten-
sions of a given set of covariance lags can be found using the procedure proposed above. Indeed, it
might seem that for ANY function f(z) such that f(z) = 0,|z| < R, we would have H%R{f(z)} #0
for t < R. Of course this is not true-indeed, our procedure constructs functions f(z) = 0,|z| < R
such that 'H%R{f(z)} = 0 for t < R. Furthermore, we have the following theorem:

Theorem:

Let f(r,8) = O for < Rand let H4R{f(r,6)} = 0fort < ¢, for any € > 0. Then HER{f(r,0)} =
0 for all t < R.

Proof: To prove this theorem we need the following lemma:

Lemma:

Let g(r,6) be any continuous function equaling zero at the origin. Define ¢'(r,0) = g(R/r.0).
compute the Radon transform §'(t,¢) of g'(r,8), and define §(t,¢) = §'(R/t,¢). Then §(t,¢) =
1B 6)—(e.0){9(7,0)/7%}.

Proof of Lemma: We have

o] 2nr
g(t, o) R{g(R/7,8)}s~rp = '/(; /o 6(R/t — rcos(8 — &))g(R/r,8)r df dr

oo f2r
/ 8(R/t — R/rcos(8 — ¢))g(r,8)R?r~3df dr
o Jo

o] 2n
/ / §(r — tcos(8 — ¢))g(r.0)tRr~ 2 df dr
o Jo

tRB(r ) (,0){9(r:0)/7°} (27)
whare we have chanoed variables from r to R/r and used the scaling property §(zR/(rt)) = vt/ Ré(x)
of the impulse. [

This result is not surprising: Reflecting a function across the circle of radius R amounts to taking

its involute, and the involute of a line (along which the Radon transform is computed) is a circle (along
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which the circular mean, i.e., the backprojection, is computed).
Proof of Theorem: For convenience in using the Lemma switch the variables ¢t and 7, and ¢ and #.

Define ¢(t,®) = Rtf(t,¢). Then
HAR{f(1.0)) = B~o(t,0)/ (B} = g(r.0)/r?

where g(r,8) = R'l{g(R/t,qb)},_,R/,. But we are given that ¢(¢,¢) = Rtf(t,¢) = 0 for t < R,
which implies that g(R/t,¢) = 0 for t > 1. But then R™{g(R/t,¢)} = 0 for r > 1, so that
§(r,8) = R~"{g(R/t,#)}+—.p/r = 0 for 7 < R. The result follows immediately. [
The heart of the above proof is the conclusion that g{R/t,¢) = 0 for ¢ > 1 implies that R*{g(R/t,¢)} =
0 for 7 > 1. Although this seems obvious, it is not in fact true unless R™'{g(R/t,¢)} is also known
to go to zero sufficiently fast as 7 — oo. This is why we also need the condition 4(r,8) = 0 for 7 < ¢,
so that g(r,0) = R~'{g(R/t,$)},_p/- is known to be zero for r > R/e.
The major point of this section is that the inability of our proposed procedure to specify all of the
2-D psd extensions of the given covariance lags, due to the non-empty nullspace of B, is not as bad as

it may first appear.

VII CONCLUSION

A procedure for estimating the power spectral density of a homogeneous random field from discrete
data inside a disk of finite radius has been presented. Unlike spectral density estimators using 2-D
linear prediction on a rectangular raster, the estimated spectral density is guaranteed to be non-
negative, since the extended (in the Radon transform domain) covariance is guaranteed to be psd.

The procedure operates by employing a novel interpolation technique, using gaussian basis func-
tions to compute the Radon transform analytically from a few discrete data points. 1-D linear predic-
tion is then used along each slice to compute spectral density estimates along each slice of the Radon
transform. The procedure can be viewed as an “autocorrelation” method, since the unknown data is

windowed to zero both for purposes of computing the Radon transform and for fitting the 1-D AR
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models to each slice of the Radon transform. This procedure also provide a high-resolution spectral

estimates for the data on the polar raster. Some numerical examples are provided to demonstrate the

validity of this procedure.
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FIGURE HEADING

. Figure 1: The polar raster on which the 2-D random field is defined with M = 8.

Figure 2: Spectrum of Sy(w,w2) = 4e~003(wi+uwi)

Figure 3: 2-D periodogram for Example 1.

. Figure 4: Spectrum obtained by using the covariance extension for Example 1.

Figure 5: Spectrum of So(w;,w,) = 10 if w? + w? < (0.6457)%, = 0 otherwise.

Figure 6: 2-D periodogram for Example 2a.

Figure 7: Spectrum using the proposed method for Example 2a.

Figure 8: 2-D periodogram for Example 2b.

Figure 9: Spectrum using the proposed method for Example 2b.

Figure 10: 2-D periodogram for Example 3a using normalized interpolating function.

Figure 11: Spectrum for Example 3a using normalized interpolating function and the proposed

method.
Figure 12: 2-D periodogram for Example 3b using normalized interpolating function.

Figure 13: Spectrum for Example 3b using normalized interpolating function and the proposed

method.
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Figure 1: The polar raster on which the 2-D random field is defined with M = 8.
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Figure 4: Spectrum obtained by using tle covariance extension for Example 1.
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Figure 5: Spectrum of Sy(wy,wz) = 10 if w? + w? < (0.6457)%, = 0 otherwise.
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Figure 6: 2-D periodogram for Example 2a.
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Figure 7: Spectrum using the proposed method for Example 2a.
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Figure 8: 2-D periodogram for Example 2b.
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Figure 9: Spectrum using the proposed method for Example 2b.
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Figure 10: 2-D periodogram for Example 3a using normalized interpolating function.
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Figure 11: Spectrum for Example 3a using normalized interpolating function and the proposed method.

40




) W
/'l'l'l:. \\
5‘\\\\\7

0

dfl

|

Figure 12: 2-D periodogram for Examyple 3b using normalized interpolating function.

41




//////

// I/III/II// /,lzzlljl ////‘:/
U

N/////’/’/w// /!/""/,,, e =

,,,,,,,,, ////////// i MW /// b
Wﬂ/ mf””/’ //ﬂ////// ,,' ////; 5 v

il

RAD(AL

Figure 13: Spectrum for Example 3b using normalized interpolating function and the proposed method.

42




APPENDIX H
W.-H. Fang and A.E. Yagle, “A Systolic Architecture for New Spilit Algorithms for
Arbitrary Toeplitz-plus-Hankel Matrices,” submitted to IEEE Trans. Signal Processing.




A Systolic Architecture for New Split Algorithms for Arbitrary
Toeplitz-plus-Hankel Matrices

Wen-Hsien Fang and Andrew E. Yagle
Dept. of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122

June 1991

Abstract

Recently. new fast algorithms have been developed for computing the optimal linear least-
squares prediction filters for arbitrary Toeplitz-plus-Hankel covariances {1]. In this correspondence,
we propose a systolic architecture that can fully express the inherent concurrency of this highly
parallelizable algorithm. The simplification of this array structure for centrosymmetric covariances
1s also addressed.



I INTRODUCTION

The adveat of high speed, low cost VLSI devices has changed the field of signal processing dramat-
ically. Due to its tremendous computational capability, more sophisticated algorithms have become
feasible through some special-purpose device, e.g. ASICs (application-specific ICs). Under such cir-
cumstances, the conventional criterion of number of computaticas alone is no longer an effective
measure of overall performance. The structure of the algorithm and its corresponding hardware archi-
tecture play an even more important role. More specifically, an efficient algorithm is defined in terms
of its parallelization and the possibility of hardware structures that can fully express its paralielism
so that minimal time complexity can be achieved.

Recently, new split algorithms were developed for computing the linear least-squares prediction
filters for arbitrary Toeplitz-plus-Hankel covariances {1]. These fast algorithms not only are highly
parallel but also perform regular iterative computations. In addition, the Laplacian operator appearing
in all the recurrences is an operation involving only closest neighbors. With these desired properties
(parallelization and .cral communication), it is natural that there exist some highly concurrent VLSI
computing processors for these fast algorithms such that the overall time complexity can be further
decreased. This correspondence confirms this conjecture by proposing some corresponding hardware
architectures which are amenable to VLSI implementations.

Special attention will be put on the systolic array architecture. This specific hardware structure
{(array processors) has several desirable features, such as making multiple use of input data (pipeline
processing), using extensive concurrency, involving only a few types of simple cells (saving design cost),
and simple and regular data flow (local communication) {2]. To follow we will follow the procedures
proposed in [3] to map the fast algorithms of [1) onto some systolic architectures. After we put in the
initial conditions, the results will rhythmically pump out of these array processors.

This correspondence is organized as follows. We begin with a brief review of the fast algorithms of

[1]. A systolic architecture is then developed to implement these fast algorithms. The array structure




and the required control program are discussed. Its simplification for centrosymmetric covariances will

also be addressed. Finally, we conclude this paper with a summary and future perspective.

I SYSTOLIC ARCHITECTURES FOR THE NEW SPLIT
ALGORITHMS

A. Review of the New Split Algorithms of [1]

The problem considered is as follows. From the 2 — 1 noisy observations {yi—1.¥i-2+---¥—(i=1)}
of a zero-mean. real-valued discrete random process {zs}, compute the linear least-squares estimates
of r; (forward prediction) and z_; (backward prediction) for ¢ = 1.1.5.2.2.5,....

The observation {y;} are related to the process {zx} by yx = zx + ni, where {n;} is a zero-mean
discrete-time white noise process with unit power, and {z;} and {n;} are uncorrelated. The estimete
of r; and z_; are computed from the observations using

=1 1—-1
o= > h(ij)y d-i= Y h(=ig)y. i=1,15.2,... (1)

J=-(1-1) j==(i-1)
The prediction filter h(i.j) are computed by solving the following Wiener-Hopf equation (for ¢ =
+1.£1.5.+£2....)
i—1
ki.j)=h(ij)+ Y h(in)k(n.j), =(lil - 1) <j<il -1 (2)
n=—(i-1)
The goal of [1] is to derive fast algorithms for solving (2) when &(i, ) (2 E[zz,]) has the Toeplitz-
plus-Hankel structure. i.e. k(i,j) = ki(i — j) + ko(i + j). For a (2[,naz — 1)t* order linear prediction
problem (from ¢ = —([lnar — 1) to Ipez — 1), the overall procedure for the new split algorithm of [1]

can be summarized as follows:

1. Initializations:

k(+1,0)

h(£1,0) = ———2—-

( ) 1+ k(0,0)
1 1 11 1
(x=,7) = k(£=,J ) = = - ar — =
s(£3,7) (i2,J) for j t3.%13, v (2l maz 2)

s(21.5") = by + k(£1,7) = R(£1,0)k(0,5")  for j' = i, x2,...,4(24maz ~ 1}




2. Computation of the non-local potentials V's:

Computing V}'s by solving the following 2 x 2 simultaneous equation:

sli—3.i-3) s(—=(i=3hi—3) Vi s(i—3,i— 1) - s(i.i)
= (3)
sti=4.—(i=4)) s(=(i-3)-(i-3) | [V s(i = 3, —(i = 1)) = s(i. =)

3. (a) Generalized Levinson algorithm

i. Border points

1

h(z+§.z

) = h(i,i—1) =V} h{i + %.—(i— %)) =h(i.—(i-1))=V? (4)

[N

ii. Nonborder points (for —(i — %) <j< (i~ %))

1 1 1 . 1 1 1
it Y= hii i+ = Y= hli——. ] (i — = Y+ VIh(—=(i~ =) 3
A+ 3,5) = Al 3)+ bl = 5) = h(i= 5. )+ ViIh( = 5.)+ V2A(=(i = 5),3) (5)
(b) Generalized Schur algorithm ( for z + % < j<2lmar)

S 390 = o0+ 3)+ (15 = 3) = i = 5,3)+ Vls(i = 3.9+ Vis(=(i = 3,3 (6)

4. Continue Steps 2 to 3 from i = | to I,nor With every step increment :i,-

where the Schur variable s(¢, j) = 8i;+k(i,7)—h(s,7) - :;1_(,-_1) h(z,n)k(n,j). Note that from (2),
s(i,g)=01if |j] < Jil
B. Systolic Array for the above Fast Algorithm

multiplications and divisions, and 4812 __ additions and

max

The above fast algorithms require 2412,
subtractions [1]. To follow, we propose a systolic architecture that can fully exploit the inherent
concurrency (parallel and pipeline processing) of this algorithm so that O(Imazr) time complexity can
be achieved.

To map this algorithm onto a corresponding array processor, we follow the procedures proposed in

(3]. First, a DG (dependence graph) is established in Figure 1, where the shaded regions denote the

region of support for the Schur algorithm. A SFG (signal flow graph) can then be derived by mapping




this DG along some feasible direction. In the sequel we choose the mapping along the i direction.
Since this is a systolic direction, the resuiting SFGs, which are shown in Figures 2 and 3. are also the
desired systolic arrays.

Figure 2 shows the array processors with 16/mq; + 4 processing elements (PE’s) that implement
the generalized Schur algorithm, while Figure 3 shows the array processors with 81,,,, — 6 PE’s that
:mplement the generalized Levinson algorithm. The overall architecture is the combination of both
two array processors. Figure 4 shows the operations performed in the right-hand (¢ > 0) upper
and lower PE’s, respectively. Th~ left-hand (i < 0) processing units are the same except that the
directions of Vilfz) are reversed. (Note that for clarity, the transmission of th,m are not shown in the
array processors of Figures 2 and 3.) For convenience, the array processors in Figures 2 and 3 will be
referred to as array S and array L. respectively.

The initial conditions s(i%. +j7), s(x1,%5"), where j = -%, 1%, e 2l - -;-,j’ =1,2,...,2lnaz—1,
and A(x1.0) are put in the array S and array L, respectively, before the recursion begins. At first
stage of the recursion, the potentials Vs are computed at the four central computing units in array S
by using (3). then V]s are sent to all the other processing units in array S to update s(7,j) by using
(6). and to array L to update h(7,j) by using (4) for the border points and (5) for the nonborder
points.

After completing the updating procedures, the contents in the array S (i.e. s(i,j)) are shifted
centerward by one unit to prepare for the next recursion. The recursion continues until i = I, With
the step of -% in each recursion. Note that in the updating process, the processing units are activated
only on alternate time steps. This is because the updating equations (5) and (6) involve the variables
of the previous two time steps. The results of this interleaving update after each time step are shown
in Figures 2 and 3. We can find that the variables indexed with integer and half-integer “pop up”
alternately. If the computation of the non-local potentials in (3) requires time interval 7, and the

npdate slie L otting gperations require time interval 3, then the total computing time complexity




would be (2. — 2)(71 + 72). Note that since the recurrences perform in-place computations, only
241 mer — 2 memory units are required.

The undesired globa! transmission (broadcasting) of the non-local potentials Vs (see Figure 4) can
be avoided by using the concept of computational wavefront proposed in [3], in which the operation
performed in each cell is triggered by the availability of the data, instead of by the global clock. The
updating processes are finished after the computational wavefront propagates from the center to the
right (left) end, for which the computing time becomes (2/maz — 2)(7y + 72) + Imaz 72 by assumption.
The extra time I;,q4-7 is the price to avoid the global communication scheme.

A program, which adopts the same notations used in (4] and summarized the above procedures,
is shown in Figure 5. This control program is broadcast to each PE before the arrays begin the
recursion. Note that further simplifications are possible. Since the arrays S and L perform almoct the
same type of operations with complementary support, we can combine both arrays into a single one
with a suitable partition. Also, since the PE’s are only active at alternate time step, pairs of adjacent
processing units can be combined together so that the number of the PE’s can be reduced by one half.

If we solve (2) directly using the Gaussian elimination procedure, O(I3},,) multiplications and

divisions, and Q([2

memory units are required using a seguential machine. Furthermore, this
mar “ )

is not a highly parallelizable procedure. Merchant and Parks provided an efficient alternative to
compute the Toeplitz-plus-Hankel coefficient matrix system of equations [5]. However, their approach
is to reformulate the original system into a block-Toeplitz system, and then solve it by the multichannel
Levinson algorithm, which not only requires much more complex computations (e.g. matrix inversion},
but also needs l-arger data bus and more memory space.

C. Simplification of the Array Structure for Centrosymmetric Ccrariances

In the special case that k(i,7) = k(—i,~J), i.e. a centrosymmetric covariance matrix, we have
h(i,7) = h(=i,=j),8(i,§) = s(=i,=j),V}! = V2

-

V2 = V1. [1] . Hence the arrays for i < 0 can be

dispensed with.




Further simplification is possible if we define

a(e,J) B h(i.j) + h(i.=j). e(i.j) 2 s(i,7) + s(i.—j), V; 2 V!4 V2 (

-3
—

then we can get the recursive expressions for a(¢,j) and e(i, j), respectively, as follows

1 1 1 1 1
o L N NP ST O
a(z+2.], a(z,]+2)+a(z,] 2) a(1 2,_])-{-V,a(z 2,]) (8)
R | o1 . .1
8(1+§,J)—e(l,]+§)+€(l,]—§)"e(l—2,])+V;€(l—§,]) (9)

and the new non-local potential V; can be computed by

P S| e 11
V,_[e(z-z,z 2)—6(1,1)]/6(1 2,1—2) (10)
! .
Simlarly. we can define
a*(i,7) & h(i.j) = h(i, =), €"(i,5) 2 s(i,5) = s(i,—5). Vi 2V -V (11)

and we can get the same recurrences for a*(i,7), e*(¢,7) and V;" as (8),(9), and (10), respectively.
The array processors for solving the centrosymmetric matrix systems are shown in Figure 6, where

four array processors are constructed to update a(i,j),a*(i,7),e(i.7), and e*(z,j) respectively. The

operations performed in each PE are similar to those of Figure 4. The division cells (DIV) are used

to compute the non-local potentials V; (V,*), which are then used to update a(Z,j) (a*(z,7)) and

e(i.7) (€"(i,7)). respectively. The resulting A(7, j) and h(i,—j) can be derived by

a(z,5) — a*(4,j)
?

ati.j) +a*(3, ),
2 4

h(i,j) = h(i,-j) = (12)

In Figure 6, 2(21,,,, — 1) PE’s are required for e(7, 7) and e*(i, ), and 21,5, PE’s are required for
a(i,j) and a*(i.7). Note that here we put two adjacent points ((¢,7) and (2 — %,j - -;-)) in each PE, so
the overall memorv recnitod i5 42 maz = L)+ 4dmar = 120mg. — - unube. Il we use the con.plementary

) support property of e(7,7) (e"(1,7)) and a(i, ) (a*(i,7)), then we can put a(,j) (a*(3,7)) at the end

of arrays e(i,j) (e*(i,j)) and use only 2(2[;naz — 1) + 1 PE’s plus 4(2[554; — 1) + 2 memory units.

——



If the division requires time interval 7{ and the update plus shifting operations require time interval
2, then the total computing time complexity would be (2[p.r — 2)(7] + 72). Again, if we use the
data-driven computational wavefront, then the computing time becomes (2/maz — 2)(T{ + 72) + Imaz 72
by assumption.

Since the symmetric Toeplitz matrix is a special case of a centrosymmetric matrix, we can compare
this array architecture with those proposed for solving the Toeplitz system of equations [6, 7). We find
that not only is the architecture simpier, but also the overall computational time is reduced. This is
not surprising because we are concerned with a linear prediction problem which has specific right-hand
side in the matrix equation, instead of solving a general Toeplitz system of equations, which requires
the inversion of a Toeplitz matrix followed by a back substitution operation. Applying our proposed
architecture to arbitrary centrosymmetric systems of equations would require additional processors
for the back substitution. Nevertheless, the proposed architecture is capable of solving more general
problems (applicable to arbitrary Toeplitz-plus-Hankel or centrosymmetric covariances) than those of

(6. 7).
III CONCLUSION

In this correspondence, we have developed a systolic architecture to implement the recently-developed
fast algorithms of [1] to compute the optimal linear least-squares prediction filters for arbitrary
Toeplitz-plus-Hankel covariances. The overall time complexity for computing the (2/mqr — 1)t* order
linear prediction filters is reduced from O([3,,) to O(Ims,) by using only O(Ipme;) PE’s and O(Imaz)
storage. Some issues that need further research are as follows. Modifications of the above systolic ar-
chitecture sc that it is capable of solving more general Toeplitz-plus-Hankel coefficient matrix system
of equations. Extension of this architecture to the 2-D counterpart [8] of the above 1-D fast algortihms.
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(right) (except the boundary PE’s of array L).

Figure 5: Program performs the update procedures in each PE.
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the boundary PE’s of array L)
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Program { for PE ; and the prediction filter at point i + 1 }
{ i will increase by $ at the end of each recursion }
for j:= —(i — 3) to (1 = }) do beat begin { 7 is an integer }
receive 1 from left{right) neighbor:
serd }; to right(left) neighbor;
{ transmission of the non-local potential}
if j is a half jnteger, then begin
if PE is non-border ccll ( j # £(¢ — 3)) then do equation (5);
else do equation (4);
end:
else {j is an integer }
PE do nothing;
beat end:
beat begin { j is 2n integer } { ¢ is a half-integer }
{same procedures by switching the role between “integer” and “half-integer” }
beat end:

end:

Figure 5: Program performs the update procedures in each PE
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Experimental Results

In this section, we provide some simple simulation results by applying the fast algorithm devel-

oped above to the image restoration (smoothing) and coding problems.

1 Image Restoration and Smoothing

The objective of the image restoration and smoothing is to recover the original image from a
degraded one which is contaminated by some sort of noise. Here, we consider the most common
case that the noise is the additive white noise and the method employed to reduce the observation
noise is the linear least squares prediction or smoothing.

The comparison criterion is the improvements of the Signal-to-Noise ratio (ISNR), which is

defined as

average signal power ~ 10log average signal power
average power of prediction error average power of observation error
average power of observation error
average power of prediction error

ISNR (dB) = 10log

10 log

For each set of data, four types of algorithms are used to compute the resulting ISNR. These
four algorithms include : Linear Prediction (LP), Linear Prediction on zero mean residues (LPZM),
Smoothing (SM), and Smoothing on zero mean residues (SMZM). LP is to use the fast algorithm
developed to compute the linear prediction filter, and SM is to compute the smoothing filter by
combining the LP and the BSK identity. LPZM (SMZM) means that the linear prediction (smooth-
ing) filter is applied on the zero mean residues which are derived by subtracting the global mean
from the original signals. For simplicity, the observation noise is the white noise with unit power.
The prediction coefficients are generated by assuming that the covariance function has the form as
p~" (p=0.995 % 1 and r is the distance from the origin) so that the requirement of the covariance
having Toeplitz-plus-Hankel structure is satisfied.

From figures (1) to (4), four different isotropic random fields are generated. The covariance
functions for these four isotropic random fields are 4(0.82)" for figure (1), 7(0.78)" for figure (2),

1
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129",l for figure (3) , and 3.5K,(r) for figure (4) respectively. The points along each direction are
fixed to 10, and ISNR is computed for different M (number of angular points).

The simulation results show that in general ISNR improves as M increases. That’s a reasonable
result since with more data points (information) available, we can get a more accurate prediction
of the original signal. The same argument can also be applicable to the result that ISNR using SM
is larger than that using LP. The latter is furtherly supported by the results that the difference of
ISNR for LP and SM becomes larger as M increases, which reflects the fact that the data points
available for SM are propotional to M so that the the difference of the data being available increase
as M increases.

The ISNR for LPZM (SMZM) are slightly better than that for LP(SM) in small M and are
approximately the same for larger M. This may be explained that when only small amount of
data are available, LPZM (SMZM) satisfy the zero mean assumption and produce a more accurate

prediction (smoothing). But as more data are available, the data generated will be approximate




zero mean so that both results won’t make much difference.

It’s worth noting that the simulation results in figures (3) and (4) are similar to those of the
previous figures regar-iless of the mismatch of the covariance function. This striking result shows
that even the linear prediction (smoothing) filters are generated by the wrong assumption of the
covariance functions, the resulting ISNR is still satisfactory as long as the random field is isotropic
and highly correlated, which happens quite often in the practical images. The ISNR in figure (4) is
better than that in figure (3) because the covariance function in figure (4) is more correlated and
does not decay as fast as that of figure (3). This highly correlated covariance, i.e. p = 1, is the
requirement to derive the above fast algorithm.

The results of the LP which use all the available data on a polar raster are better than those use
only the data on the same line, which is equivalent to 1-D linear prediction problem (1DLP). As
shown in the figure (5), the ISNR for LP is always larger than that for 1IDLP. In addition, since the
linear prediction only utilizes the previous sample in the 1DLP, the ISNR will be approximately the
same for all M, which is opposed to that for LP (SM). This is another advantage of LP over 1DLP.
Although the algorithm for the latter is faster by using the 1-D Levinson algorithm, however, the
performance is worse.

These simulation results confirm our claim that these two algorithms (for prediction and smooth-

ing) work well independent of the value of M, although the performance gets better as M increases,

i.e. more data are available.




2 Linear Predictive Coding of Images

We can note that the linear predictive coefficients can be obtained as long as the covariance
function is available. Therefore, we can either store or transmit the residues of the data instead of
the data itself and accompany the covariance function as the side information. Since the residues are
derived by subtracting the linear combination of the previous data from the present data to reduce
the unnecessary redundency, hence they are in general smaller than the data themselves. Besides,
in many cases only few parameters, e.g. p in the isotropic random field, would be required to specify
the covariance function. Therefore, the overall storage requirement can be reduced significantly in
the finite precision environment.

We take the previous data as examples by considering the noisy images as the original image
and the prediction errors as the prediction residues. The data in tables (1) and (2) are the same
as those of figures (4) and (7) respectively. In the following tables, we compare the average signal
power and the resulting prediction residues using both the LP and 1DLP.

The experiments show that the results using LP always provide the optimal performa.ncé and
are significantly smaller than the average signal power, thereby the storage requirements can be
reduced. It must be emphasized that the performance depends on the test images. The results get
worse when there are large variations in the images large, e.g. edges or lines. This is the limitation
of the bach least-square method which takes into account of all the data, so that the results can
not adapt the quick change sof the outside environment. The above result can also be regarded as
a tradeoff between performance and complexity. Although complicated algorithms would take lots

of time, it would also provide optimal performance, i.e. require minimal storage requirements.




M | Average Signal Power (dB) { 1DLP (dB) | LP (dB)
4 3.73 -1.04 -6.22
6 3.69 -1.16 -8.16
8 3.70 -1.55 -8.32
10 3.69 -0.52 -8.56
12 3.68 -1.24 -8.59
14 3.68 -0.88 -9.04
16 3.68 -1.15 -9.89

Table 1: Comparison of Average Signal and Residues Power Using 1DLP and LP for Different M

(Number of Angular Points)

T__I\:I-— Average Signal Power (dB) | 1IDLP (dB) | LP (dB)
4 5.69 -1.10 -6.97
6 5.68 -1.04 -8.95
8 5.68 -1.57 -9.84
10 5.68 -1.36 -10.12
12 5.68 -1.29 -10.22
14 5.67 -0.97 -11.07
16 5.67 -1.16 -12.03

Table 2: Comparison of Average Signal and Residues Power Using 1DLP and LP for Different M

(Number of Angular Points)
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NEW ANALOGUES OF SPLIT ALGORITHMS
FOR TOEPLITZ-PLUS-HANKEL MATRICES

Andrew E. Yagle

Dept. of Electrical Engineering and Computer Science

The University of Michigan. Ann Arbor. Michigan 48109

ABSTRACT

New fast algocrithms for solving arbitrary Toeplitz-plus-
Hankel systems of equations are presented. The algorithins
are analogues of the split Levinson and Schur algorithnis,
althoug!l. the more genera! Toepltz-plus-Hankel structure
requires that the algorithms be based on a four term recur-
rer.ce: relations with previous split algorithms are noted.
The algorithms require roughly half as manv multiplica-

tions as previous fast algorithms for Toeplitz-plus-Hankel
systems.

[. INTRODUCTION

Toeplits-plus-Hankel (TH) sy<tems of equations have
many important applications, surh as linear prediction for
nonstationary processes with TH covariances, two-sided au-
toregressive spectral estimation [1]. linear-phase prediction
filter design (2]. Hildebrand-Prony <prctral line estimation
procedure [3!. and PADE approxiation to the cosine se-
ries expansion of an even function {4]. Integral equations
with a TH kernel arises in atinospleric scattering (5] and
rarefied gas dynamics (6].

Fast aigorithms for TH systews have appeared in {7)-
{9]. The new algorithms of this paper can be viewed as
split versions of those of (8], or as weneralizations of the split
algorithms of {10] from symm-rt.ic Toeplitz to arbitrary TH
systems.

The heart of the new algorithms is a four-term recwr-
rence that generalizes the three-terin recurrences of {10] to
TH matrices. This r:currence requires two ,aultiplications
per update. half the number required by the algorithins
of [71-[9]. This is anaiogous to the 50% savings in multi-
plications for the split algorithms of [10} over the classical
Levinson and Schur algorithms.

II. DERIVATION OF FOUR-TERM RECURRENCE
A The Basic Problem

We consider the solution of the TH system

"1 ko - k-, L 0 S Sece
: Ai oty Autiony 0 0
k.o koo : : = : :
B . K h-..--l hl.l-l Y 0
Koy oo L4k, 0 1 S--.c 5-.-
(1)

where the Sy, 4, are defined from the {k,,} and {k,,} in
(15) below, and the ij** element of the system matrix has
the form

kg =ki(i—J)+ ki +7) (2)

for arbitrary functions ky(-) and (-1 Note in particular
that the systemn matrix need be neither symmetric nor per-
symmetric; the only requirement 1~ that all of the cential
submatrices be nonsingular.

Updating (1) from i to i+ 1 increases the size of the nia-
trix by two; this requires two updates. and requires k,;2 /)
be defined at half-integer values (1/2.,/2). If1/24;/2isnot
an integer, let k,/5 /2 = 0:if 1/2+ ) /215 an integer. assign
kisz.,/2 such that the matrix with 11" coordinate k2 ,,; is
TH. If k,, is spec.ficd by the form (2). this can be done eus-
ily by inserting the half-integer values in ihe functions kyi -}
and k() (note that the argument« will always be integers).

Omitting the first and last rows of (1) allows it to he
rewritten as

=1
0=k, +hi,+ Z hinkn ).

n=—(1-1)

~=1)<;3<-1.13)

Now define the interpolated systen of (3) as

r=h/2

0=k1/2, 4172+ hsizget2 + Z
n=-1t=1/2)

h|+l/’2_nkn‘1+l/‘l

(4)
and similarly for =2 — 1/2. The interpolated systems for
various ~rers are auxiliary systems of TH systems that
are solved along with (3) by the algorithms to follow. This
artifice is necessary in order to obtain split algorithms solv-
ing nested systems.

B. Derivation of Four-Term Recurrence for h, ,

To make the derivation easier to follow, we consider
only positive i. Define the discrete wave operator A of a
function f; ; as

Afi = fisrjay + ficrjag = frgeripa = fiy-i2 (5)

A is the discrete version of the continuous operator (f;’y -
3'-’-;,). Note that the TH structure (2) is equivalent to
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Ak;, =0; forintegeri+ ;. (6)

Apply the operator A to (3) by writing (3) with & re-
placed with : £ 1/2, and then j replaced with j + 1/2. and
then adding and subtracting (4) appropriately. Using (3),
(6. the non-singularity of (11. and ~ome algebra gives [16]

Ahy =V Ay, + VAo, —0=3/2) < 5 <0=3/2
(7)

where we have defined thie potentials [11]

V.] = h.+|/2‘.-1/2 _hx.l—l;";z = /’/+!/2.—(|-I/'2) _hx.—ll—l)~
{8)

Eq. (7) can be written as

hx+l/2.) = hl.)$|/2+h’|.)"|/2+("x‘ -1 )"1—1/2 )+V.2h-u—lr'2) J
(9)

This is the four-term recurrence at the heart of the new
algorithms. It is analogous to the three-term recurrence on
which the split algorithms of [10] are based. although there
are some differences (see Section \'1).

[II. NEW SPLIT LEVINSON ALGORITHM

The four-term recurrence (9) can be propagated in in-
creasing fi| and —(Ji] — 3/2) € ; < }i| = 3/2. Note that
for 1 an integer/half-integer, j will take half-integer/integer
values, respectively. However. since (9) does not hold for
J = x(1— 1), we must update h, »,_;, using (8). and simi-
larly for h_, +(,_1). Also.(8) and (9) require V! and V2 to
be supplied separately, computed from k,,; note that (8)
cannot be used to compute V! and V'2, since (8) is needed
to update hy, 1(,_1). We now show how V;! and V? can be
computed from previously computed h, ; and &, ,.

A. Computation of V! and V¢

Setting ) =1 — 1 in (3) and (4) gives

i-1/2
hivijza-172 = —ksaj20-172 = Z Risijankni-1/2
n=-{1-1/2)
(10a)
t~1
hl.l—l = ‘kl,l—l - Z hl.nkn.l—L (106)

n=—(r-1)

Eq. (10b) requires only k,, (known) and A, ; (from the
previous recursion); however, (10a) requires R,z ;. which
has not yet been computed. Substituting (19) into {10a)
and much algebra results in the following. Define the Schur
variables

2 hy wka .

nx—{s—1}

5'~)=6'.)+kl.j+ j=t1 (11)

Note S, ; can be computed from known &, ; and h, ;. Then
it may be shown that

Setpacipt S-mamactn H ] [ s.-u..-.n-s.. ]
Siciptimtemtn) Sogmipnhetimam s""’"""” -

The existence of a unique solution to (12), which can easily
be found in closed form, is proved 1 Section V below.

B. New Split Levinson Algorithm

Instialization: hyy g = =k, i1 + ko)
Computation of V!
and h,, (from previous recursion) n~sing +11). Compute 17}

and V? from S, 1, and S,_y 4,,_,, n~ing (12)
Update h, ,: Compute hy(,y /21 £(1~12) using (8}
Compute h,yyj2,. i €0 = 3/2) using (9)

Compute h_(, 4y, similarly nang (7).

At this point the recursion is complere. The computed
h;., for integer/ half-integer 1 and ; solve the original svs-
tem {3)/interpolated system {4). 1espectively: note that 1wo
recursions are needed to increase the <ize of the system 13}
by two (i.e., update: to i + 1)

This algorithm differs from the split Levinson algo-
rithm of {10 in two respects. First. the non-symmietric TH
system matrix requires four sequences 1} and V2, of po-
tentials and the four-term recurrence (13). The symmetric
Toeplitz system matrix solved by the split Levinson algo-
rithm of [10] requires only one sequence of potentials and
a three-term recurrence. Second. the split Levinson algo-
rithm of {10] propagates not h,, but h,, + A, _); this is
more efficient for symmetric Toeplitz matrices, but requires
recovery of h, ; from h, ; + h, _, at termination.

IV. NEW SPLIT SCHUR ALGORITHM

The “inner product” (11) is a camputational hottle-
neck, as in the classical Levinson algorithm. We now derive
a new split Schur-type algorithm for arbitrary TH matrices.
This algorithm can be propagate« in parallel with the split
Levinson algorithm derived above: this avoids the compu-
tational bottleneck (11). The same idea was used for the
classical Schur and Levinson algorithms in [12]

The first step is to show that the forward prediction
error filter satisfies the four-termn recurrence (9). From this.
we show that the S, ; defined in (11) tnow for all j > 1) also
satisfy (9). Then (9), initialized nsing 4, ;. can be used to
compute V,! and V? quickly.

A. Four-Term Recurrence for S, ,

]

Define ¢, ; as the forward prediction error filter ¢, ,
8;, + hi,. Clearly ¢, satisfies (9) for —(+ — 3/2) < <
1 — 3/2 since &; ; = h,, for these valnes. At ;3 = (1 - 1/2)
or £{i+1/2) ¢, ; satisfies (9), since this reduces to (8). And
for |7 > 1+ 3/2 (9) reduces to 0 = 0. Hence (9) with b,
replaced with @, is true for ali / an integer/half-integer
and j a half-integer/integer:

N

Gir1/2, = Guyrijztde, -1+ (V) -1 )O.-n/a.,*‘v.zo—(--u /7).

(13)

Next, extend the definition S, , in (11) to all integers

and half-integers 1 and j such that » + is an integer. From
(3)and (4) Sij=0for —(i—1)< ;< -1,and

Sis=Y (Binthindbu,+ka,) =Y Gunlbn,+kily=n)
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+ky(y == 0, + 0., e hyigi+ 0, _)t";(}\ [REY

where * denotes a convolution in

Sinee 1131 is linear in functions of )1t may be con-
voived with k1) Adding + 131 to the convolution of (13)
wirh &y 31 and the convolution of the tine-reversal of (131

with &, ;) and using (14} gives

Sie1 2 ;= S, ,*1/2’5-.,—!,‘1*“‘.| -1 '5-—1/‘2.;"”".25—1:—1/2).

(13)

Hence S, also satisfies the four-rern recvrrence (9).
B. New Split Schur Algorithsn

Intialization: Sy, = ko ;i Syvizy+10 = kxvj2,0 0

Computation of V', V2. Compute V! and V) from
S, s and S,21 3 2(—-1/2) using (121 Similar equations are
used to compute V! and V2,

Update S, ,. (71 > 1 using (15}

At this point the recursion is complete. The aplit Schur
algorithm can be run in paiallel with the split Levinson
algotithm, supplying the potentials V! and V2, while by-
paswing the “inner product” compnration (111 ((1211s sall
necessary . as suggested 1o 12 for rhe classical algorithnis
Note ki, and k.0 ,.; 2 for mteeer o oand half-integer
2 umquely determunes b for 2l
using (6.

now i Lj. i+ j an in-
teger.

[ the oniginal system « 3i s a Jhscretizas,on of an nte-
gral equation, then S, , << laud tiie #, 1n11) dominates
the other te msif 1 = ; In this case the solution to 1120 1s

simply V' =S,y , oy - S and V=S o -5, -,
VOSOLUTION OF ARBITRARY TH SYSTEMS

The s>pht algonithms above <oice the wystems 13 and
41 hence thev also solve Liwith S, ., defined as 17

We now cousider the general proidom

R A

[# S 1)-,
|
cen )L

(16)

|

L ke

where the right side 15 now arbintian

.

Define {c,. =1 € j < 1} recursively as follows Let ¢,
be the solution to the 2 « 2 svstenn

r 1 1 T <l
S S les] L Leenen @S
R 5)7 LS !L h, S:>;l_,,-;;c"5"l
(1
Then the solution to (16115 given in
)
.r}_-Zr,,o,,, c< g < (18)

These equations may be denived eaxily by taking linear coun-
binations (weighted by the c4,) of the columns of (1) for
increasing + and equating to (16} Note how this relies on
the split algorithms solving nested <ystems of equations as
t Increases.

The 2 x 2 systems (12) and (17) have unique solutions
if the central submatrices of the system matrix (1) are non-
singutar. To see this. suppose that the 2 x 2 system matrix
in (12) and (17) is singular. Then the second column 18
a multiple (say m) of the first column, and the column
vector {1,-- -, (h_y,, —mh, ), - . —m]T solves the homoge-
neous system associated with (1). which 1s impossible as
long as the system matrix in (1) is nonsingular.

VL. RELATION WITH PREVIOUS SPLIT ALGORITHMS
A. Relation to the Split Algorithms of [10]

To show how the new algorithins reduce to the split
algorithms of {10]. we first consider the class of TH matrices
such that k,, = k_,_,. In renns of (2) both /. and
ky(-) are even functions; note that covariance functions of
time-reversible random processes have this property. The
set of centrosymmetric matrices 1matrices that are both
persymmetric k,; = k_, _, and svounetric k, ;o= k)1 18
a subset of this class. From i3) /, , = h_, -, from (11)
S, = S_,._,. and from {12} Vo= V2 and Vo= VY
Hence the computations for 1 < 00 are all unnecessary

We can go further. Defining

@, =h,~h . e,=8,-5 . V=U-1"
19,
replacing j with —j 1n (7) and (151 and adding to 47 and
{15 respectively results in
AG,J = "Ial°l 7 S, ;= 1.r(|~1._¥ 201

Adding the twa equations of {12+ allows 1 to be computed
from €, , by

Visteraon -0 o 121

From (3) and (19" a, , is the solition 1o

Z @y nkn . {22}

n= ~tr=11

k,,+ k,—, =a,,+

The solution to (22) can be recursively computed using the
three-term recurrences (20), along with (21). These equa-
tions have virtually the same form as the split algorithins
of [10], even though k, , 1s not Toeplsts.

To see what is happening here. use (2} to rewrnite the
left side of (22) as

k,, +ko_y =k =)+ kalt+ 1+ bl + )+ k- )

=k(1~j)+ ki1 +7) (23)

where k(i) = k(1) + kz(1). From: (19) @\, = @\ -, and
the right side of (22) can be rewritten usir«, this and (23).
yielding

-1

K(i-3)+k(i+1) = a0, + 9 aualkin = )+ k(n+ ). (24)

nm=0
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Thus 15 the symmetric Toeplitz sy~tem <olved by the spht
algorithms of [10], after shifting fioin a one-sided to a two-
siaed interva!. This shows how the<e algorithms are related
to the algorithms of tii~ paper  Note that the split algo-
rithms of (10) propagate a,,. not b, h, , must be com-

puted from a, , at the end

VI CONCLUSION

New fast aigonthins have heon denieed for solving o
itrary TH svstenms of eonations The new algorithms can
be vn;wmi as analogres of the <piit Levinson and Schur
algonithms of 100, but applicable 10 a more general prob-
e The sphit Levinson algorithni recursively computes the
sojution using a four-term recurrence, but requires a non-
parallelizable computation (11) to compute the potentials.
The split Schur algorithm computes the potentials using a
sirular four-term recurrence: using it in parallel with the
split Levinson algorithm obviates 111) and allows the saine
processor architecture to be used for both algonthms.
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DISCRETE FAST ALGORITHMS FOR TWO-DIMEN-
sJONAL LINEAR PREDICTION ON A POLAR RASTER

Wen-Hsten Fang and Andrew E- Yagle
Dept. ot Electrical Engineering and Computer Science
The University of Michigan., Aun Arbor. Michigan 48109-2122

ABSTRACT

New discrete generalized split Levinson and Schur algo-
athms for the two-dimensional linear least-squares predic-
Lion problem on a polar raster are derived. The algorithms
compute the prediction filter for estimating a random field
at the edge of a disk. from noisy observations inside the disk.
The covariance function of the random field is assumed to
nave a Toeplitz-plus-Hankel structure for both its radial part
and its transverse part. This assumption can be shown to
be closely related with some types of random fields. such as
isotropic random fields. The aigorithms gencralize the spiit
Levinson and Schur algorithms in two ways: (1) to two di-
mensio 1s; and (2) to Toeplitz-plus-Hankel covariances.

I INTRODUCTION

The problem of computing linear least-squares estimates of
two-dimensional random fields from noisy observations has
many applications in image processing. In particular, the
wwo-dimensional discrete linear prediction problem is a useful
formulation of problems in smoothing and image coding and
restoration|l].

If the random field: (1) is defined on a rectangular lat-
tice of points: {2) is stationary; and (3) has quarter-plane or
asymmetric half-plane casuality. then the two-dimensional
linear prediction problem may be solved using th- multi.
channel Levinson algorithm [2,3,4].

However. in some medical imaging problems, and in spot-
hight synthetic aperture radar, data are collected on a polar
raster of points. rather than on a rectangular lattice. Al-
though such data can be interpolated onto a rectangular lat-
tice, this is necessarily inexact: it also affects the covariance
function. For restoring noisy images. image coding, etc., it
18 clearly desirable to develop analogues of the multichannel
Levinson and Schur algorithms applicable to discrete random
fields defined on a polar raster.

This paper develops these analogues. They generalize
previous results in three wavs: (1) the random field is de-
fined on a polar raster; (2) the random field is not required
to be stationary; rather, its covariancc must have Toeplitz-
plus-Hankel structure in both the radial and transverse di-
rections: and (3) the quarter-plane or asymmetric half plane
causality assumption is replaced by a more natural causalitv

in the radial direction only; the prediction filters estimate
the random field at a given point using observations from all
points of smaller radius. The algorithms are generalizations
of the split algorithms [5,6]

This paper is organized as follows. In Section II, the
two-dimensional analogues of the discrete split Levinson re-
currence and split Schur recurrence for the linear prediction
problem on a polar raster are derived. The derivation is
based on the assumption that both the radial part and the
transverse part of the covariance have Toeplitz-plus-Hankel
structure. In Section 11, an isotropic random field is shown
to have a Toeplitz-plus-Hankel covariance, the overall com-
plexity of the proposed algorithm is evaluated, and compar-
isons with the result of [7] are made. Section IV concludes
with a summary and a discussion of how the resuits of this
paper can be used to solve the general smoothing problem.

II DERIVATION OF THE RECURRENCE
A. Basic Problem

The problem considered is as follows. From noisy ob-
servations {y,n} of a zero-mean real-valued discrete ran-
dom field {z;n} at the points (i, N) of a polar raster on
a disk, compute the linear least-squares estimate of z, v for
all points on the edge of the disk. Here : is an integer ra-
dius from the origin, and N is the integer index of the argu-
ment{angle); if there are M points distributed on the circle
of any radius, then (i, N) is the point at radius i and angle
2rNIM.

The observations {y.n} are related to the field z, 5 by
yin = TN + vin, where {v;n} is a zero-mean discrete
white noise field with unit power, and {z,5} and {vn}
are uncorrelated. The covariance of {z;x}. E[z.n,Z;n,] =
K(i, Ny;j, N3), is assumed to be a non-negative definite func-
tion with Toeplitz-plus-Hankel structure in both arguments.
The estimates of z; ¥ at the edge of the disk are computed
from the observations {y, v} using

-1 M
En = Y h(i, Mg, My, (1)
1=0 Na=1

The optimal prediction filters h(s, Ny; j, N;) are computed
by solving the two-dimensional discrete Wiener-Hopf equa-
tion
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K(i, N3 7. N2) = B(t, Ny 5, N?)

-1 M
+ Z Z h(i,NI;n,N;,)K(n,Nyj, Ng) (2)
2 m(m1) Ny=1
forall -(1—1)<j<i-1landl £ N, N; £ M. The goal is
to derive a fast algorithm for solving (2) when K (i, Ny;j, N2)
has the Toeplitz-plus-Hankel structure shown (5) and (6)
below.

We decompose the update procedure into two steps by
introducing an interpolated {auxiliary) system. As shown in
Figure 1, between every pair of points in the radial direc-
tion, we insert an auxiliary point. The covariance function
K (1, Ni; 5, N;) is interpolated at these auxiliary points such
that the block Toeplitz-plus-Hankel structure (see (5),(6))
is maintained. Then the prediction filter can be defined at
the interpolated points as the solution to the interpolated
system, which has the form of (2) but is specified on the
interpolated points.

B. Derivation of the Levinson-Like Recurrence

Define the discrete wave operators A, and Ay by

. . o1 . A | .
Arf(LNI;J,Nz)=f(1+'2',N1;J.N2)+f(1“E,NﬁJ.Nz)

. .1 . o1
=S NGg 4 5. M) = f(1, Nz j = 5, Na) ()

8o, Mri3,Na) = 106 = 5, (N + )5, ((Va))
= 3 (= )5, (V) = Tl =5, (V) 3, (Vo + 1)

— Jli = (M) (Mg = 1)) @)

where A, and Ay can be regarded as discrete versions of the
continuous operators (fr:‘- - 5?%) and (g%‘- - 535;—) for the
radial part and transverse part, respectively, and (()) means
a mod M operation.

We assume that the covariance function has the block
Toeplitz-plus-Hankel structure

ApK (1. NyijyNg) = 0 (5)
A K(1, N33, N) 0 (6)

I

Some examples satisfying (5) and (6) can be found in [8].

Applying the Laplacian operator A = A, + Ay to the
equation (2), we have after some algebra (8]

o1 . ) o1 . ¢
h(E+ 5, Niig, Na) = h(i, Ny j + 5, Na) + h(i, i3 j = 2, Na)

o1 .
—h("%y va]v N2)+k(’_%’ Nl!]v N2+1)+h(’-_:2-’ Nl'J' N:‘l)

1 . o1 . M
~h(i—-2-,N, +l;],N,)—h(z—§,Ng ~L;j,Na)+ 3

Ny=1

1 . .1 ,
(VN Nadh(i=5, Nai o Na)+ Vi (Mo, No)h(~(i=3), NoiJ, Na)]

(7
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forall -(i-3)<j<(i~ 2} and 1 < Ny, N3 < M. Here
we have defined the potentials

S T e
V,"’(N,,N2)=—[h(z+-Q'.Nl;z—-‘t\z)-h(l.‘\l;z—l.,\',)]

2
1 1 (&)
ViT(NL Ng) = =[h(a+5, Ny —i+§‘N2)—h(i.N1: —1+1.V;)

{9)

Equation (7) is the basic recurrence that is the heart o)f
the Levinson-like algorithm. The left side is the difference of
two two-dimensional discrete Laplacian operators. analogoys
to the difference of one-dimensional discrete Laplacian oper-
ators appearing in the split algorithms of [5]. The right side
generalizes the three-term recurrence in [5] to a multi-term
recurrence; this is analogous to the matrix recurrence in [6).
However, it is applicable to non-symmetric block Toeplitz-
plus-Hankel systems (see (8]).

When 1 is an integer and j is a half-integer, equation (7)
will update A from the real points to the interpolated points.
When i is a half-integer and j is an integer. equation (7) will
update h from the interpolated points to the real points.

C. Derivation of the Schur-Like Recurrence

We still need to calculate the potentials V*(N,, N;) and
V."(Ny, N;) at the beginning of every update so that we can
use the recursive formula (7). Since an inner product is a bot-
tle neck in a parallel processing environment, we overcome
this difficulty by introducing the Schur variables (defined at
integer and half-integer points)

(i, N1, Na) = 8 nyng + K (6, Ny; 5, Na) = h(3, Ny5 1 N))
-1 M
- Y 3 AG,Nun,N3)K(n,N3ij,Ni) (1)
n==(1~1) Na=1
where §; v, v, = 0 unless i = j and Ny = N, in which case
it is unity.

Since the Schur variables are the linear combinations of
the prediction errorfilters &; n, j.v, —h(3, Vi j, Ma). equations
(7)-(8) show that s(i, Ny; j, N;) satisfies the recurrence (7),
but now for all j:

o1 . R
s(i + %,Nl;j, Ny)=s(i, M55 + E,Nﬂ +8(i, Myjj - E,Nz)
1 . o1 .
—s(i—%,N;;j, Ng)+s(i—§.N1;J'Nz+1)+8(l—§,NﬁJ'Nz-l)

o1 : M

-s(i - lle + 1, Ny) = s(i— 2, Ny =15, Np) + 3

2 2 Ny=1

1 .

Vit (Vs Ns)s(img, Nsi 3, Na)H Vi (s, Nada(=(i=5), Noi o Mol

(1Y

Equation (11) is the basic recurrence for the Schur-like

algorithm; for —(i — 1) € j < (§ = 1), 8(s, M; 5, N2) = 0 by

).

Setting j = (i — 1) and —(i — 1) in (11) respectively, we
can solve for V;* and V;~ in closed form as [8]:

V+ = (X-Y(8) 15 +)(8* -8+ (8-) 1§71}

V- = (Y =X(§+*)"18+")(8~~ - §-+(§**)1§+-|13)

]




where we have defined the M x M matrices

[V*}M..\'z = V:‘*(.‘Vl. Ny [V']N,,N, =V (N, N (14)

. 1. A SR
[S¥|nyvy = s(E(t = 3). Vi = 5). V) (15)
) R oy .
Xv,n, =sli=-5. M- ;..\2) —s(2, N5, V)
+ Agsli, Nyt - é,:vg) (16)
S A . .
Yo = sli = 5.3 (0 = 5). V) = (i, My =i o)
o1
+ Qgs(t, Ny, — (1 — 3).Nz) (17)

D. Summary of Overall Procedure

The overall procedure can be summarized as follows. Let
I...c be the largest radius (maximum radial prediction or-
der). Ther for all 1 < Ny, Ny < M:

1. Initialization
Compute h(£3, Ny;0.Nz), (1, My;0, N2) using (2).
Compute s(ﬂ:-%.Nl;j,N;), s(£1, N1;3, N2) using (10)
for all j = £1,..., 22l maz.
2. Propagation of Split Schur-Like Algorithm
A Computate the potentials V¥ (N,, N2) and V7 (N1, Ny)
using (12) and (13);
B Update the Schur variables using (11) for j = (i +
1), £2 s
3. Propagation of Split Levinson-Like Recurrence

A. Propagate the Boundary Points:

o1 Car
h(;‘+l‘}\’l;z—§.N2):h(z,hl;z-—l,Nz)—V,*'(Nth)

2
(18)
1 1 . . -
h(i+3, Mo —1+5, Ng) = h(i, Nis —i+1, Na) =V (M1, Vy)
i (19)

B.Propagate Non-boundary Points:

Update A{i. Ny; j, N;) using equation (7) for j = —(1—
Htj=0G-1).

4. Repeat steps 2 and 3 from ¢ = 1 t0 /pna, With increment
1

1

Note that the above generalized Levinson and Schur re-
currences {7) and (11) are highly parallel, and perform the
same *vpe of in-place computation. This allows a highly
parallel and pipelined architecture to be developed for this
algorithm.

III DISCUSSION
A. Isotropic Random Field

For an isctropic random field, the covariance is a function
of distance only, i.e., if z and y are two arbitrary points in the
plane, then K(z,y) = K(Jz — y|). Consider the special case

of a isotropic random field with covariance K(z,y) = pl==v’,
which is often used in image modeling. In polar coordinates
on a discrete polar raster, and if p = 1, this covariance func-
tion can be represented as

K (i, Ny3j, Np) = p* +17 - 2seosan(Na=Na) /M)

= PP = P1- (430 =i leonar My -Na)/M) o 1 4 L

(((+5) +(i=3 )=+ =(i=)*]cos(2x (N, = N2) /N ) In p(20)

Note that the exponent has the Toeplitz-plus-Hankel struc-
ture required by (5) and (6), and that it is not merely block-
Toeplitz; hence the multichannel Levinson algorithm is not
applicable. If p = 1, the entire covariance satisfies (5) and
(6). Indeed, any slowly-changing function of distance satis-
fies (5) and (6).

B. Computational Complezity

We determine the number of multiplications/divisions
(MADs) needed to solve (4) up to order i = I,,,;. The ini-
tialization of the Levinson-like recurrences requires 2 M x M
matrix inversions and 4 M x M matrix multiplications, or
2(NTJ + %) + 4 M3 MADs. The initialization of the Schur-
like recurrences requires 8/, M x M matrix multiplications
, or 81,,:M3 MADs. Each Schur-like recursion update of
(3, Ny 3, Na) from 1 to i + 1 requires 16(Jmar —i)M? MADs.
Computation of the potentials requires 4 M x M matrix
inversions and 6 M x M matrix multiplications. Finally,
updating h(i, Ny; j, N;) from i to i + 1 in the Levinson-like
recurrence requires 4(2i + 1)M? MADs. The total number
of multiplications needed to solve (2) up to i = I;n, is equal
to (8]

68M3

4L M? + I‘““(_s_ +4M%) +(

3
M My = o2

masM?)
(21)
For large I, this is much less than the number of
MADs required for the solution of (4) by Gaussian elimina-
tion, which would require imesM) | BlmesMP _ O[3 M?)
multiplications. In addition, as shown in the above proce-
dures, this procedure is highly parallelizable. Therefore, the
overall reduction in time complexity would be even more sig-
nificant using vector/parallel processors.

C. Relations with Continuous Algorithms

It is instructive to examine the continuous-parameter lim-
its of some of the equations of this paper. Let the intervals
between points be §, in the radial direction and 65 = 4 radi-
ans in the transverse direction. Introducing a radial weight-
ing factor, and taking limits as §, and & go to zero result in
the following transformations:

1. The discrete Wiener-Hopf equation (2) becomes the
Wiener-Hopf integral equation;

2. 6; NN, becomes a continuous two-dimensional impulse
function, dominating the other terms in the defini-
tion (10) of the Schur variables. The recursion (1!)




now propagates the non-impulsive part of the Schur
variables, so that (12) and (13) may be replaced with
V+ ~ X and V- = Y. Compare this to

8 i)
wamwn=—%;+—ﬁdaky=nﬁ) (22)

dy

where r and y are continuous radii and 8, and 4; are
continuous angles. Equation (22) has the form of (4-
17b) of [7). Similarly, the continuous version of (13) has
the form of (4-2) of [7]. Equation (7), with its difference
of discrete two-dimensional Laplacian operators on the
left side, is clearly analogous to (A, = Laplacian with
respect to r)

2

(Be=8,)h(z,013,02) = [ V(z,01:00)h(z, bs:, 1) dby
(23)

which is the two-dimensional form of (4-1) of {7}. How-
ever, (23) is NOT the continuous limit of (15) with
radial weighting, since 7’;;‘-’;(\/5,’(1)) =(&+iL-
+45)f(z), which is not the radial part of the 2-D Lapla-
cian. On the other hand, ify(zf(z)) = (£+%ﬁ)f(z),
which is the radial part of the 3-D Laplacian. This
shows that the results of [7], derived for the continu-
ous 3-D case, do not apply ezactly to the 2-D case (as
do the results of this paper);

. The algorithms of this paper require the differences of
the radial parts and transverse parts of the Laplacian
of the covariance to be separately zero: (5) and (6)
must be separately zero. However, in the continuous
limit, we have h(i, Ny;n, N3) = h(i—1, Ny;n, N3); then
it suffices for the sum (A, + Ag)K(i,Ny; 5, N3) = 0,
rather than (5) and (6) separately. This agrees with the
requirement (A, — A, )K(z,y) = 0 for the algorithms
in [7].

We can draw some important conclusions from these
observations. If the algorithms of this paper are being
used to solve a discretized Wiener-Hopf equation, then

(a) In (12) and (13) the impulses i~2d to diagonally-
dominant systems, so that (12) and (13) may be
replaced with the approximations V*+ ~ X and
V- 2 Y . Therefore, the overall complexity will
be furtherly reduced by avoiding the matrix in-
versions in (12) and (13);

(b) By the chain rule, any continuous function of the
distance between two points will satisfy (5) and
(6), since the square of the distance itself does.
Hence the algorithms may be used for any isotropic
random field. Note in particular that (20) be-

cofmes

K (i, Ny; j, Ny) = pf+5 -2icoalMi=Nalio) - (24)

andp"—vlu&—oo;

(c) Conditions (5) and (6) may be replaced with the
more general condition (A, +A¢)K(i, Ny; 5, N;3) =
0.

2020

Numerical studies have shown that approximation (2)
give very good results for &, = 0.001, but discretization i,
much more sensitive to non-infinitesimal §,.

IV CONCLUSION

New fast algorithms for solving the discrete 2-D Wiener.
Hopf equation on a polar raster when the covariance functiop
has block Toeplitz-plus-Hankel structure have been deriveg,
Since we have performed explicitly discrete derivations, in-
stead of just discretizing the continuous versions, the algo.
rithms work regardless of the number of points used. If ad.
jacent points are close enough, tnen the algorithm would
reduce to the continuous case [7].

The smoothing filter for estimating the points inside the
disk can be computed from the prediction filters using a gen-
eralized discrete Bellman-Siegert-Krein identity. The overall
complexity is reduced compared with Gaussian elimination

9.

[ Unresolved issues include mapping of this algorithm into
optimal array processor architectures, the numerical stability
of the algorithm, and practical applications of this algorithm
in problems such as image restoration and coding.
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Fast algorithms for computing the linear least-squares estimate of a multi-dimensional
random field from noisy observations inside a circle (2-D) or sphere (3-D) are derived. The
double Radon transform of the random field covariance is assumed to have a Toeplitz-plus-
Hankel structure; this is equivalent to the multi-dimensional spatial displacement property
(Az = Ay)k(z,y) = 0. Note that this only reduces the number of degrees of freedom by
one; homogeneous and isotropic random fields are included as special cases. The algorithms
exploit this structure to reduce the amount of computation needed to solve the multi-
dimensional Wiener-Hopf equation

Key) = ha,)+ [ bz k(0 Wi<lel, 29,2 € R

The algorithms can be viewed as generalized split Levinson and Schur algorithms, since
they exploit this structure in the same way that their one-dimensional counterparts exploit
the Toeplitz structure of the covariance of a stationary random process. The algorithms
are easily parallelizable, and they are recursive in increasing radius of the hypersphere of
observations. They have the form

(8: = B)h(a,y) = [Viz,eh(iale,v)de, llell =1, z,y€ R

where V(z,e) characterizes the filters h(z,y) for |y] < |z| < |z| much as the reflection coeffi-
cients characterize the 1-D prediction filters of all orders. The discrete forms of the problem
and the algorithm are shown to be simply the obvious discretizations of the equations given
here.

It is important to note that these algorithms do NOT assume quarter-plane or asym-
metric half-plane support for the filter, as do previous “2-D” Levinson algorithms that
are really multichannel 1-D algorithms. The new algorithms are true multi-dimensional
algorithme that do not attempt to reduce dimensionality, but only take advantage of an
assumed structure of the covariance function.

An earlier version of this work was presented at the ICASSP in New York. The new
material presented here includes:

1. The discrete form of the problem, and the discrete algorithm solving it;
2. Numerical results on the performance of the algorithm;

3. A procedure for estimating a covariance of the desired form from a sample function of
a random field (i.e., a multi-dimensional “Toeplitzation plus Hankelization™)
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